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Simulations of the spectra of vibrational transitions in highly vibrationally excited XY6 molecules at certain
energyEvib are performed. The infrared (IR) transitions in the modeν3 of the molecules SF6 and WF6 as
well as the Raman ones in the modeν1 of SF6 are studied. The shapes and parameters of the spectral bands,
such as the integral intensity, the mean frequency, and the width, are obtained in a wide range ofEvib. The
calculated widths prove to be much broader than the expected contributions to them because of intramolecular
vibrational relaxation (IVR); this indicates the dominant role of statistical inhomogeneous broadening in the
width formation for the investigated molecules.

1. Introduction

The multiple-photon (MP) excitation (E) of vibrations in and
dissociation (D) of polyatomic molecules in the ground elec-
tronic state by intense IR laser pulses are at the root of a new
line of inquiry in photochemistry that made its appearance thanks
to the advent in the early 1970s of high-power pulsed CO2 lasers
operating in the range 9-11 µm. After the first successful
experiments on the resonant action of CO2 laser pulses upon
molecular gases absorbing in the region of 10µm,1,2 and
especially after the demonstration of the isotope-selective IR
MPD of polyatomic molecules (BCl3, SF6),3 there followed
numerous experimental and theoretical works whose results were
summarized in a series of reviews and monographs.4-12 The
interest in the IR MPE/D processes persists today because of
the promise they hold for the separation of isotopes on an
industrial scale in the future when reliable and economical high-
power tunable pulsed IR lasers with a high repetition frequency13

are developed.
The model of IR MPD of a polyatomic molecule is schemati-

cally illustrated in Figure 1. This qualitative model has already
been discussed in the reviews and monographs cited, and here
it is presented solely to make convenient the exposition of the
object of the present paper. The molecule first absorbs a few
IR photons in the transitions of its vibrational mode involved
in the resonant interaction with the IR radiation (see the left-
hand side of Figure 1). Thereafter, above some threshold energy
Eonset(onset of vibrational chaos), there takes place the intramo-
lecular vibrational redistribution (IVR) of the absorbed energy
among the rest of the vibrational molecular modes as a result
of the intermode anharmonic interaction (this is schematically
shown by the broken arrows in Figure 1). This process is
governed by the density of the anharmonic intermode resonances
of different orders,14-17 and it may have a multiple time scale
character18,19 at that. Finally, at the third stage, the highly
excited molecule keeps absorbing the IR radiation in conditions
of modification of the vibrational excitation spectrum of all the
modes and the intermode anharmonicity. Qualitatively this
modification boils down to the shifting of the vibrational
absorption band toward the red side and its broadening as a

result of the intermode anharmonicity, as illustrated schemati-
cally on the right-hand side of Figure 1. Several experimental
methods aimed at studying this evolution of the vibrational
absorption spectrum of polyatomic molecules are described in
refs 20-23. The results of these works as well as other ex-
perimental and theoretical investigations of highly vibrationally
excited molecules were summarized in ref 24 and a recent
review in ref 25.
The main difficulty in comparing theory and experiment is

the scarcity of data on the nature of broadening (see, for exam-
ple, discussion in ref 26 related to the IR spectrum of highly
vibrationally excited molecules C2F5I). Two effects originally
contribute to the width: (1) the IVR of the energy from the
vibrational mode under study (say,νa) which leads to the
homogeneousbroadening, and (2) the fact that molecular exci-
tation near a certain vibrational energyEvib can be represented
by numerous combinations of occupation numbers of various
vibrational modes which may lead to theinhomogeneous
broadening due to different anharmonic shifts of the frequency
of the modeνa by different combinations. The first contribution
is given by the rate of IVR of the modeνa. In simple oscillator
models, it is associated withfriction, or damping, etc. For
polyatomic molecules, it is calculated in the general form in
refs 16 and 27. The purpose of the present work is to model
theoretically only the second effect ofstatistical inhomogeneous
broadeningof IR and Raman transitions in polyatomic mol-
ecules. It can dominate at certain conditions, which are dis-
cussed below in section 2. It is useful to note here that, in the
general stochastic theory of the line shape by Kubo,28 such
domination is referred to as the case ofslow modulation(pre-
suming also slow damping). On the contrary,fast modulation
leads to the collapse of the inhomogeneous width. This collapse
is analogous, in particular, to the well-known Dicke narrowing.29

For the highly vibrationally excited molecule, the fast modula-
tion case roughly corresponds to the fast IVR of all the modes
other thanνa (more details are in section 2), and the remaining
collapsed width is associated with the rate of thepurely phase
IVR.30,31

We have enough indications from the experiment at present
to make a statement that any of the above-mentioned effects
may be mainly responsible for the broadening of spectra in
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different specific cases. Realistic arguments have been made,
for example, in ref 32 in favor that the IR spectrum of mode
ν27 in the moleculec-C6F12 atEvib ) 60 000 cm-1 is broadened
due to IVR of this mode. The same conclusion has been drawn
in ref 21 relating to the IR spectrum of modeν21 in the molecule
(CF3)3CI at Evib ) 35 000 cm-1. The pure dephasing width,
however, gives probably the main contribution to the IR
spectrum of the C-H stretching mode in the molecule (CF3)3-
CH at room temperature, i.e. mean vibrational energy of about
2000 cm-1 (see the experimental results in ref 33 and related
discussion of these results in ref 31). Eventually, inhomogeneity
is considered as the principal effect in the width, at high
vibrational energies, for the IR spectra of modeν4 of CF3I in
ref 22 and modeν3 of SF6 in ref 34. We, as said above, will
concentrate in this paper on the latter, just the statistical
inhomogeneous broadening (in particular, for theν3 of SF6).
The paper is organized as follows. Basic definitions, ap-

proximations, and equations to describe the effect of statistical
inhomogeneity on spectra of vibrational transitions are given
in section 2. The inhomogeneous spectral shapes can be
calculated with knowledge of the fundamental frequenciesνi
of molecular vibrations and the spectroscopic anharmonicity
constantsxij, which are usually available from routine spec-
troscopy of the fundamental, combination, and overtone bands.
The calculation procedure is described, in general, in section
3. Being applied to infrared transitions in the triply degenerated
modes of spherical molecules like XY6, it requires also the
inclusion of anharmonic splitting. The calculation results in a
wide range of vibrational energy are presented in section 4 for
the molecule SF6, and in section 5 for the molecule WF6. The
rotations are not involved up to this point. Their inclusion is
made in section 6, in a simple way, after finding the nonsen-
sitivity of previous results to the Coriolis splitting. Finally, in

section 7, we discuss the reliability of calculated spectra in
connection with the existing estimates on the IVR rates in SF6.

2. Theory: Definitions and Approximations

We consider optical transitions near the frequency of one
mode of a molecule (say,νa) which start from a vibrational state
|gR〉 at some energyEvib. Our assumptions and definitions are
as follows.
(i) The modeνa is referred to as theactiVe mode: it is implied

that it is really active in either the infrared or the Raman
spectrum, and correspondingly, the infrared or the Raman
transitions are treated.
(ii) The upward transitions are considered for definiteness;

this means that the absorptive infrared transitions or Stokes
Raman ones are under treatment.
(iii) The other modesνi with i ) 1, ...,s, wherei * a, and

s is the number of vibrational degrees of freedom, are referred
to as thebath modesin accordance with the convention accepted
in the literature on IVR.
(iv) The state|gR〉 is assumed to bechaotic(see, for example,

discussion in ref 35); among other things, this means that
the |gR〉 hasmanysignificant projections on theregular states
|hâ〉, the latter being described in terms of the set of mode
occupation numbersni with their energiesE{ni}

(0) nearEvib.
(v) Just mentioned energies of the regular states|hâ〉 ≡ |n1,

...,ns〉 are assumed to contain the zero-order harmonic contribu-
tion and at least principal anharmonic corrections due to the
spectroscopic anharmonicity constantsxij, i.e.

Figure 1. Main features of IR MPE/D. See the text for details.

Eâ
(0)≡ Ei{n}

(0) ≈∑
i)1

s

ni[νi + xii(ni - 1)] + ∑
i)1

s

∑
j)1

i-1

xijninj (1)
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(vi) For illustrative purposes, we also involve somemixing
parameterδE, a typical energy interval wherein the states|hâ〉
with close energies (eq 1) are strongly mixed, giving the|gR〉
as the chaotic eigenstates.
Let us consider now the upward optical transitions from the

state

with the energyER. For each basis state|hâ〉 entering the right
side of eq 2, there is one relevant bright state|hâ

(+)〉 in the
vicinity of the energyEvib + νa which coincides with the|hâ〉
in all mode occupation numbersni exceptna, being nowna +
1. Next, we include the principal anharmonic corrections to
the frequency of the transition|hâ〉 f |hâ

(+)〉 according to eq 1
and use the harmonic approximation for its intensity, so the
frequency is

and intensity, in the units of thena ) 0 f na ) 1 transition
intensity, is

If the states|hâ
(+)〉 werethe eigenstates, one would observe the

spectrum of the upward transitions from the|gR〉 (see eq 2) as
the lines with the frequenciesωâ

(+) (see eq 3) and the intensi-
ties |câR|2Iâ(+) (see eqs 2 and 4). However, they are not; the
eigenstates near the energyER + νa are chaotic, being some
superpositions of the regular states, and transition occurs, in
principle, to any upper eigenstate having a nonzero projection
on any of the|hâ

(+)〉. Here we involve the mixing parameterδE
and notice that, in one limited case shown in Figure 2 where
spreading of the frequenciesωâ

(+) is much widerthan theδE,
the expected spectrum, in low resolution, cannot differ much
from the contour of the (ωâ

(+), Iâ
(+)) lines. Really, in that case

of smallδE, each (ωâ
(+), Iâ

(+)) line may be considered as leading
to some manifold of the widthδE and integral intensityIâ

(+),
and any of such manifolds may interfere with only a small part
of them. This situation may be referred to as the statistical
inhomogeneity of the spectrum, since the effect results from
differentfrequencies (see eq 3) of the transitions fromdifferent
regular states giving the contributions to the initial chaotic state
(eq 2). Further, being interested in the low-resolution spectrum
from an ensemble of the chaotic states|gR〉 with close energies,
one must do the averaging in both theR andâ. As long as the
equality∑RcâR

2 ) 1 holds true, eachωâ
(+) line is present in this

spectrum as a narrow manifold of lines with its integral intensity
Iâ inherent in the regular state|hâ〉, and the searched spectrum
must have the same low-resolution features as the spectrum from
the ensemble of regular states near the same energy. When
discussing the form of this spectrum, the terminhomogeneous
widthmay be used, in particular.
We considered the case of the relatively small mixing

parameterδE. The physical cause of the mixing is IVR, and
roughly, the faster the IVR, the greaterδE should be. Being
reformulated in terms of the IVR ratesγi, the adequate criterion
(see, for example, ref 31) for the inhomogeneous broadening
to dominate is a set of the inequalities

where the following assignments are used:nji is the mean (or
equilibrium) occupation number in theith mode at the total
vibrational energyEvib; γi describes the exponential evolution
(during IVR) of the current energy in theith mode to the
equilibrium energynjiνi; ∆i is equal to the shift of the average
transition frequency (eq 3) when the occupation number in the
ith mode changes fromni to ni + 1 and simultaneous averaging
atEvib over the rest of the occupation numbers is implied. All
three parameters entering the inequality eq 5 depend onEvib.
The nji(Evib) and∆i(Evib) can be calculated numerically with
knowledge ofνi and xij,31 but evaluation ofγi(Evib) requires
either the knowledge of the anharmonic coupling terms (see,
for example, ref 27) and hard calculations or the experimental
data and is very far from being a routine task. So, a natural
way to make things clearer is to calculate the spectral shapes
due to the inhomogeneous contribution; then, this should enable
us to estimate how fast IVR rates cannot be ignored. Our further
consideration is limited to the systems like those where the
dominant role of the inhomogeneous broadening has been
assumed (and probably proved) previously.34

3. Calculation Procedure

To simulate spectra with the dominant role of inhomogeneity,
one must have tools for calculating two things as follows from
the considerations of section 2. It is needed, first, to construct
in explicit numerical form the representative ensemble of the
regular states|hâ〉 lying near some energy of interestEvib and,
second, to get the frequencies and intensities of optical transi-
tions from each state in the spectral region of interest. Then
the resulting spectrum can be found as some average for the
ensemble. Since we are interested in the spectrum also for the
ensemble (now of the chaotic states also|gR〉), the averaging
procedure would assume uniform contribution from all states

Figure 2. Illustration of the case when similarity of the spectra for
the chaotic states to the inhomogeneous spectra for the ensembles of
regular states may be expected. The allowed one-to-one upward
transitions between the regular states|h〉 are schematically shown on
the left side. The mixing of close regular states gives the chaotic states
|g〉 on the right side. The optical transitions from any state|g〉 may
occur toeVery chaotic state having nonzero projection onto, at least,
one of the relevant|h(+)〉 states.

|gR〉 ) ∑
â

câR|hâ〉 (2)

ωâ
(+) ≈ νa + 2xaana + ∑

i*a
xaini (3)

Iâ
(+) ≈ na + 1 (4)

γi , nji∆i (5)

1440 J. Phys. Chem. A, Vol. 102, No. 9, 1998 Makarov et al.



of the constructed ensemble and, in addition, take into account
(by multiplication) their statistical weights when necessary.
Construction of the|hâ〉 ensemble may bedirect or random.

The direct procedure implies trying possible combinations of
the mode occupation numbers and selecting all those states
whose energy (eq 1) falls into some chosen narrow energy
interval near theEvib. Such procedure is computationally
reasonable for small molecules, but for large molecules, it
becomes expensive even with the best numerical algorithms.
Of course, we tried the direct procedure for several cases of
our studies below, but found that practically the same final
results for the spectra could be obtained with the randomly
selected ensembles which, as a rule, involved only a small part
of the states nearEvib. We discuss, next, this random-ensemble
construction and justify it in some detail.
3.1. State Ensemble Selection.The procedure starts with

defining the upper and lower edges of the narrow energy interval
near the currentEvib, usually Evib ( ∆E. Then the mode
occupation numbersni are randomly generated using some
statistics, which is mathematically approved and adjusted to the
Evib, and each{ni} generation is checked to see whether the
corresponding energy (eq 1) falls in the interval fromEvib -
∆E to Evib + ∆E or not. If it does, then the generated state is
included in our further calculation. The choice of the statistics
must ensure the equal probabilities of generation of the
nondegenerated states with equal energies. In the approximation
wherein the anharmonic corrections in eq 1 are neglected, this
problem can be solved using the Boltzmann statistics

for the independent harmonic oscillators with the frequencies
νi and degeneraciesgi of the modes of the molecule. In fact,
the probabilityW({ni}) of the {ni} generation divided by the
corresponding state degeneracyG({ni}) ) ∏i)1

s Gni depends on
the sum of harmonic energiesniνi, only:

The parameterT in eqs 6 and 7 is equivalent to the temperature
and may be optimized for the rate of successful trials. The
“optimum temperature”T0 can be quite well determined by
solving the equation

which equalizes the current vibrational energy on the left side
to the mean vibrational energy at the temperatureT0 (in the
units of the Boltzmann constant) on the right side.
Choice of the window 2∆E for selection of the randomly

generated states atEvib is dictated by two reasons: it would be
small enough for the regular dependence of the spectrum
parameters onEvib to be neglected inside, but would be large
enough to ensure the representative statistics. The number of
selected states within the 2∆E window would be also large
enough to provide sufficient reproducibility of the spectrum from
one computational run to another as well as quality of further

smoothing procedures. These optional parameters are given
below in every particular case.
In our further calculations, if there are no complete data on

the anharmonicity constants (the molecule WF6), we, selecting
the generated states, limit ourselves to the harmonic approxima-
tion, for definiteness; otherwise (the molecule SF6), we use eq
1 in full. It should be noted, however, that anharmonic
corrections do not lead to any visible effects other than some
evident small compression of the vibrational energy scale (see
below for details).
3.2. Transition Frequencies and Intensities.Upward one-

quantum vibrational transitions are under treatment in the present
study, as discussed in the beginning of section 2, wherein eqs
3 and 4 are given for schematic description of the transition
frequency and intensity, correspondingly. These formulas,
however, are adequate just for asymmetric molecules having
only nondegenarate vibrations. The XY6 molecules being the
subject of this work are spherically symmetric and belong to
the point symmetry groupOh; their normal modes are usually
assigned to theOh-group irreducible representations as follows:

We are considering the Raman transitions in the nondegenerate
mode ν1 and infrared transitions in the 3-fold degenerate
modeν3.
Following Hecht,36 we write out (with minor, quite evident

modifications) the diagonal second-order perturbation vibrational
Hamiltonian:

Hereni is theith mode occupation-number operator,m̂2z is the
operator of the vibrational angular momentum for the 2-fold
degenerate modeν2, l̂ i is the operator of the vibrational angular
momentum for the 3-fold degenerate modeνi (i ) 3, ..., 6),
and the operatorsÔij(tensor) andOij(scalar) are some quartic
combinations of the related vibrational coordinates and momenta
explicitly given in ref 36. Further, in eq 9, the coefficientsXij,
Gij, Tij, andSij are, in fact, the spectroscopic anharmonicity
constants: the constantsX are responsible for the common shift
of the manifold of states with the same set{ni} of vibrational
quantum numbers (identically to eq (1), and the other constants
are responsible for the splitting inside this manifold.
In this work, we limit ourselves to the perturbation Hamil-

tonian, eq 9. Transitions in the modeν1 are, in this approxima-
tion, described by single line of the frequency (eq 3) and
intensity (eq 4) since there are no other terms than theX ones
in the Hamiltonian (eq 9) coupling the modeν1 with the rest of
the modes, so the splittings are identical in the lower and upper
manifolds of then1 f n1+1 Raman transition. On the contrary,
the infrared transitionn3 f n3 + 1 consists of some number of
lines. If only the vibrational quantum numbern3 is nonzero,
then then3 f n3 + 1 transition spectrum depends on the three
constantsX33,G33, andT33. This case is studied well, and related
constants can be found in literature. Knowing these constants,
one can find the frequencies and intensities, which belong to
any n3 f n3 + 1 transition, in general numerically, but even

ν1(A1g), ν2(Eg), ν3(F1u), ν4(F1u), ν5(F2g), ν6(F2u)

Ĥ2
′ (vib,diag)) ∑

i)1

6

Xiin̂i(n̂i - 1)+ ∑
i)1

6

∑
j)1

i-1

Xijn̂in̂j + G22m̂2z
2 +

∑
i)3

6

∑
j)3

i

Gij[( l̂ i‚l j) - n̂iδij] + ∑
i)2

6

∑
j)3

i

TijÔij(tensor)+

∑
i)3

6

∑
j)3

i-1

SijÔij(scalar) (9)

Wi(ni) ) [1- exp(-
νi
T)]gi (ni + gi - 1)!

ni!(gi - 1)!
exp(-

niνi
T )

) [1- exp(-
νi
T)]giGni

exp(-
niνi
T ) (6)

W({ni}) ) ∏
i)1

s

Wi(ni) ) C(T) G({ni}) exp(-∑
i)1

s

niνi) (7)

Evib ) ∑
i)1

s giνi

exp(νi/T0) - 1
(8)
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analytically for some firstn3 values.36 Some general features
of those spectra are that the integral intensity, assuming that
the split levels are populated proportionally to their degeneracies,
depends on the initialn3 as

and the weight center (mean frequency) is given by

That is, it is shifted from the fundamental frequencyν3 by the
value on the right side of eq 11. The effect of nonzero
vibrational quantum numbers in the other modes of the molecule
on then3 f n3 + 1 transition spectrum consists of two parts,
and we encounter only one of them in this work. Namely, we
assume that all the constantsG3i, T3i, andS3i (i * 3) are equal
to zero. Then the spectrum in the modeν3 from any selected
state with the set{ni} of the mode occupation quantum numbers
takes the structure of then3 f n3 + 1 transition, with the current
n3 shifted additionally by

The nonzero constantsG3i, T3i, andS3i may lead to additional
splittings. Our simplification is enforced to a certain extent,
since these constants are far from being known in full for the
molecules studied in this work. After presentation of the
calculation results, we shall discuss this subject more.

4. Results for the Molecule SF6

After some analysis of available experimental data, we have
taken for calculations the values of frequenciesνi and anhar-
monicity constantsXij presented in Table 1. Our comments are
as follows. The presented value ofν3 is taken from ref 37; it
corresponds to Hecht’s definition ofν36 and is slightly shifted
from theν3 band originm(ν3) by the value 2B0ú3≈ 0.126 cm-1,
whereB0 is the rotational constant andú3 is the Coriolis constant.
The other frequencies are taken from ref 38 as the band origins
m(νi) either measured or cited therein. The intramode anhar-
monicity constants for the modeν3 are taken from ref 39, where
they are obtained by the interpretation of not only the 3ν3 band
(as in some other works on this subject) but also the 2ν3 - ν3
band; the constantX33 is given in Table 1, and two other
constants are

All other constantsXij are from ref 40, where they are defined
as “effective” ones and obtained from the analysis of many
combination bands, but one constantX35 is only estimated.
Simulations of the inhomogeneous spectra in the modesν1

andν3 were performed for the energies starting from the onset

of the vibrational chaos in SF6 (Eonset= 5000 cm-1 41) up to
the dissociation limit, which is about 32 000 cm-1 42.
4.1. Modeν3. As said above in section 3, our calculation

of the spectrum starts from the selection of a certain number of
vibrational states within the 2∆E interval near the energyEvib.
The value∆E ) 50 cm-1 was used in all our computations.
The reason for this choice was that the narrower∆E (even down
to 1 cm-1) did not show any significant difference in the
resulting spectral contour parameters for any energyEvib. In
addition, the procedure of selection of the states, falling into
this energy interval∆E, from the randomly generated ones
turned out to be fast enough to deal with the large ensembles,
usually about 104 states.
The spectral distribution (histogram) of transition intensities

is shown in Figure 3 for three energiesEvib ) 7000 cm-1 (a),
Evib ) 15 000 cm-1 (b), andEvib ) 30 000 cm-1 (c). Each of
these histograms presents intensities of all allowed transitions
from the states selected in one computational run divided by
the number of these states (10 000 for Figure 3a, 10 000 for
Figure 3b, and 5000 for Figure 3c). Therefore, the aggregate
intensity of the histogram is equal to (nj3 + 3)/3 in the units of
the 0f 1 transition intensity (see eq 10) with the modeν3
mean occupation numbernj3 just for that run. One can see from
the presented histograms the evolution of the transition spec-
trum: the higher the energyEvib, the more intense, broadened,
and red-shifted this spectrum is. Of course, the histogram
characteristics at some energyEvib fluctuate from run to run,
but these fluctuations naturally drop (∝Nrun

-1/2) as the number
Nrun of selected states is increased. Such parameters of the
spectrum as its integral intensity, mean frequency, and typical
width converge to some well-defined values which, in addition,
do not depend on∆E.

TABLE 1: 32SF6 Spectroscopic Constants (in cm-1) Used for
Calculations

i νi X1i X2i X3i X4i X5i X6i

1 774.5445 -0.896 -2.358 -2.902 -1.144 -1.12 -0.3625
2 643.35 -0.43 -3.603 -1.271 -0.62 -0.348
3 948.1025 -1.7468 -1.52 -1.2 -1.102
4 615.020 -0.19 +0.13 -0.1086
5 523.56 +0.85 -1.15
6 346.076 -0.8

I(n3 f n3 + 1)) 1
3
(n3 + 3)I(0f 1) (10)

νj(n3 f n3 + 1)- ν3 ) (2X33 + G33)n3 (11)

∆νadd) ∑
i*3
X3ini (12)

G33 ) 0.9262 cm-1, T33 ) -0.2487 cm-1

Figure 3. Histograms of the intensity distribution of the upward
transitions in theν3 mode of SF6 for different vibrational energies: (a)
7000 cm-1; (b) 15000 cm-1; (c) 30000 cm-1. The fundamental
frequency is indicated by the arrow.
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Now, we discuss how the histograms, as shown in Figure 3,
are further processed for determination of the spectral contour
parameters. Here it should be noted that we are treating spectra
with the dominant role of inhomogeneity, but thechaotic
spectra, nevertheless. The latter means that each transition in
the histogram represents, in fact, some relatively narrow
substructure due to the mixing of the regular states (see the
discussion in section 2 illustrated schematically by Figure 2).
From the very general considerations outlined also in section
2, the mentioned substructure is expected to be of Lorentzian-
contour type. So, the natural procedure of smoothing histograms
is their convolution with the Lorentzian. It is preferable to use
some realistic Lorentzian halfwidth,γL, and the halfwidths
estimated by Angelie´34 for the case under consideration from
his own experimental results43 have been used. In addition, to
extract the net result of the statistical inhomogeneity, the
convolution with the narrow Gaussian window has been done.
Its width 2σGw was taken to ensure histogram smoothing as well
as to add to the histogram width not more than several percent.
Particular values of 2σGw are given in the captions for the
relevant figures.
The results of these convolutions are shown in Figure 4. This

figure presents the transition spectra [the spectral densityIν(ν)
of the transition intensity] for the same energies as in Figure 3.
As mentioned earlier for the histograms, the transition spectrum
becomes broader and shifts to the red side when the energy of
the moleculeEvib goes up. The resulting spectral shape may
be well-approximated by the Gaussian. One example is shown
in Figure 5, and rather good quality of this approximation can

be seen there; another less satisfactory trial to approximate the
calculated spectrum by the Lorentzian is shown for comparison.
Next, the dependences of the spectral-contour parameters are

presented. It should be mentioned that, for each energyEvib of
SF6, the histogram was calculated several times to estimate the
accuracy of calculations and find its parameters such as the mean
frequencyνj, standard deviationσ0, and integral intensityI0. So,
the points on the plots, giving the contour parameters, are
obtained by averaging over several computation runs. Figure
6 shows the dependences of the mean frequency (in terms of
its shift ∆ν3 from the fundamental frequencyν3) and contour
width 2σ0 on the energyEvib. Formally calculated in the course
of the histogram generation, these parameters are in good
agreement with the best-fit Gaussian ones. It is seen that both
dependences exhibit very closely the linear law.
The linear dependence for the shift of the mean frequencyνj

of any vibrational band from the corresponding fundamental
mode frequencyνi, i.e.∆νi ) νj - νi, is frequently explored in
literature in the form

whereXh i is an “average” anharmonicity constant. In the case
under consideration this average anharmonicity constant can be

Figure 4. Upward transition spectra in theν3 mode of SF6 for different
vibrational energies: (a) 7000 cm-1; (b) 15000 cm-1; (c) 30000 cm-1.
The solid lines present the results of convolution of the histograms in
Figure 3 with the Gaussian windows of the width 2σGw equal to 1.5
cm-1 (a), 2.7 cm-1 (b), and 5.4 cm-1 (c). The dashed lines present the
results of convolution of the same histograms with the Lorentzians of
the widths 2γL equal to 1 cm-1 (a), 3 cm-1 (b), and 6 cm-1 (c).

Figure 5. Fit of the calculated upward transition spectrum in theν3
mode of SF6 (solid line) by the Gaussian (dotted line) and Lorentzian
(dashed line);Evib ) 20000 cm-1, 2σGw ) 3.6 cm-1.

Figure 6. Shift ∆ν3 (line 1) of the mean frequency of the upward
transitions in theν3 mode of SF6 and width 2σ0 (line 2) of the spectral
contour as functions of the vibrational energy.

∆νi ) Xh i
Evib
νi

(13)
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obtained from the slope of the∆ν3(Evib) dependence in Figure
6, which gives the valueXh3 ) -3.11 ( 0.01 cm-1. For
interpretation of this linear law, it is ordinarily assumed that
the vibrational energy isuniformly distributed among all
vibrational degrees of freedom. Then some simple formulas
expressing theXh i through the spectroscopic constants may be
derived. In our particular case of the 3-fold degenerate mode
ν3 the formula of such a kind is

This gives, after the substitution of the SF6 constants, the value
Xh3 ) -3.136 cm-1, which agrees well with theXh3 found from
Figure 6.
The standard deviationσ0 characterizes the contour width;

namely, if the contour is approximated by the Gaussian, it is
equal to the halfwidth at the e-1/2Imax level. One can notice
that the full width 2σ0 is rather high, changing from 9.9 cm-1

for Evib ) 7000 cm-1 to 33.6 cm-1 for Evib ) 30 000 cm-1

near the dissociation limit. It is, at least, much wider than the
assumed homogeneous width 2γL being used in the convolution
procedure (theγL values are shown in the caption to Figure 4).
The normalized integral intensity of the spectrumI0(Evib) (see

Figure 7) coincides well with the theoretical predictionI0(Evib)
) (nj3 + 3)/3, wherenj3(Evib) is the average occupation number
in the ν3 mode for the energyEvib.
It should be noted that all above calculations were performed

with the inclusion of the anharmonic shifts in the state selection
procedure (see section 3.1). We have checked the influence of
this on the final results and found that the use of harmonic
energies does not lead to significant errors. For example, at
the highestEvib, the errors are 3.8% for∆ν3, 7.0% forσ0, and
1.9% for I0. In the ν1 mode case considered in the next
subsection, the similar errors are, respectively, 4.9%, 2.6%, and
2.8%.
4.2. Modeν1. In the case of the modeν1, we deal, in fact,

with the Stokes Raman transitions. The histograms of their
intensity distribution (see Figure 8) look somewhat different
compared to the histograms in Figure 3. Now, the groups of
spectral lines with equal intensity, i.e. related to the same
generated occupation numbern1, are clearly seen. Also, these

histograms are narrower and more asymmetric than those for
the transitions in the modeν3. All these facts indicate what
may be expected for the nondegenerate mode, whereas the
anharmonic splitting in the degenerate modeν3 makes the
spectrum broader and more symmetric. Let us clarify this.
As said, any group of the spectral lines with equal intensity

joins the transitions from the states with the samen1 and gives
some fragment to the histogram. It is seen from Figure 8 that
the fragment width becomes less for largern1. This can be
easily understood as long as the energy in the other modes
diminishes at the same time (the total energyEvib remains
constant), so deviation of the transition frequencies diminishes,
too. The weight centers (mean frequencies) of different
fragments do not coincide, in general. The sign of this shift of
the n1 + 1 fragment with respect to then1 fragment depends
on the relations between the intramode anharmonicity constant
X11 and the intermode anharmonicity constantsX1i; it is positive
in the case under consideration, so one can see a sharper blue
edge for the histogram. Similar behavior could be expected
for the transition spectra in the modeν3 if there were no
anharmonic splittings. With the splitting, however, eachn3
fragment becomes wider; moreover, this additional width grows
with then3, and any histogram asymmetry disappears.
The calculated histograms were processed as previously. The

distinction was that their convolution with only the narrow
Gaussian window was carried out, since there are no indications
in literature of the IVR rate of the modeν1. The resulting
spectral contours are shown in Figure 9. It is seen that these
contours are narrower and less red-shifted than in the case of
the modeν3. This is because of smaller values of theX1i
anharmonicity constants. One can also see in Figure 10 that,
as in the case of the modeν3, the spectral contour is

Figure 7. Integral intensity of the upward transitions in theν3 mode
of SF6 and WF6 molecules as a function of the vibrational energy. This
intensityI0 is given in the relative units of that of the 0f 1 transition.

Figure 8. Histograms of the intensity distribution of the Raman Stokes
transitions in theν1 mode of SF6 for different vibrational energies: (a)
7000 cm-1; (b) 15000 cm-1; (c) 30000 cm-1. The fundamental
frequency is indicated by the arrow.

Xh3≈ (∑
i)1

6

gi)
-1 (8X33 + 4G33 + ∑

i)1(i*3)

6

gi
ν3

νi
X3i) (14)
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approximated rather well by the Gaussian. Approximation by
the Lorentzian is worse.
The shift∆ν1 of the contour maximum and the contour width

2σ0 are shown in Figure 11 as functions of the energyEvib. The
average anharmonicity constantXh1 ) -1.85( 0.01 cm-1 can
be found from the slope of the first of these dependences (see
eq 13 and related discussion). The approximate formula, like
eq 14 for the 3-fold degenerated modeν3, is now

It gives the valueXh1 ) -1.873 cm-1.

The width 2σ0 is narrower than for the transitions in the mode
ν3 at the same vibrational energy and grows from 4.4 cm-1 for
Evib ) 7000 cm-1 up to 14.2 cm-1 for Evib ) 30 000 cm-1.
Nevertheless, these widths are again much wider than the 2γL
for the modeν3. The integral normalized intensityI0 must
follow the nj1 + 1 prediction as the function of the vibrational
energy, and it does.
Concluding this section, we stress its principal result: the

widths of the SF6 spectra in the modesν3 andν1 are determined
mainly by the effect of statistical inhomogeneous broadening.

5. Results for the Molecule WF6

The developed model of statistical inhomogeneous broadening
is applied here to another molecule of the XY6 type, namely,
WF6. The tungsten atom is approximately 6 times heavier than
the sulfur atom, and this results in considerable change of
spectral parameters of the fundamental modes. The effect of
central atom substitution on the spectral features is studied in
this section.
5.1. Spectroscopic Parameters of WF6. This molecule is

studied much less than the SF6. We sought complete sets of
the anharmonic constants for different modes and succeeded
only for the modeν3. Unfortunately, we did not find anywhere
the experimentally measured values of intramode anharmonic
constantsG33 andT33, which are responsible for splittings of
theν3 mode energy levels. Only computed values are available
from ref 44, which are probably somewhat smaller than the
actual existing ones. The latter may be deduced by comparing
the SF6 constants computed in the same ref 44 with the
experimental values. Nevertheless, we have preferred to use,
for definiteness, the complete set of anharmonic constants{X33,
G33, T33} from the same ref 44 rather than extract one of them,
X33, from any other source (for example,X33 was measured in
ref 45). As for the other spectroscopic constants, theX3i and
the νi have been taken from ref 45, except the more precise
ν3, which was taken from ref 46. The spectroscopic constants
that are explored in the present calculations are listed in
Table 2.
5.2. Mode ν3. The onset of the vibrational chaos in the

molecule WF6 is unknown, but supposedly lies lower than in
SF6 because of smaller normal mode frequencies. So, our
simulations started from the energyEvib ) 5000 cm-1. As long

Figure 9. Raman Stokes spectra in theν1 mode of SF6 for different
vibrational energies: (a) 7000 cm-1; (b) 15000 cm-1; (c) 30000 cm-1.
They result from convolution of the histograms in Figure 8 with the
Gaussian windows of the width 2σGw equal to 1.2 cm-1 (a), 1.6 cm-1

(b), and 2.8 cm-1 (c).

Figure 10. Fit of the calculated Raman Stokes spectrum in theν1 mode
of SF6 (solid line) by the Gaussian (dotted line) and Lorentzian (dashed
line); Evib ) 20000 cm-1, 2σGw ) 2 cm-1.

Xh1≈ (∑
i)1

6

gi)
-1 (4X11 + ∑

i)2

6

gi
ν1
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X1i) (15)

Figure 11. Shift ∆ν1 (line 1) of the mean frequency of the Raman
Stokes transitions in theν1 mode of SF6 and width 2σ0 (line 2) of the
spectral contour as functions of the vibrational energy.

Statistical Inhomogeneous Broadening J. Phys. Chem. A, Vol. 102, No. 9, 19981445



as the anharmonicity constants of WF6 are not known in full,
we have calculated only harmonic energies of vibrational states
for their selection. Figure 12 shows the inhomogeneous spectra
after processing the histograms. These spectra are for the same
energies as the previously shown spectra for also the modeν3,
but of SF6 (see Figure 4). Now the spectra are about 3 times
broader and more red-shifted; this may be understood from the
fact that the excitations of the low-frequency modes of WF6,
due to large anharmonicity constants, lead to larger frequency
shifts than in SF6. The spectral contour parameters∆ν3 and
2σ0 depending on the energyEvib are shown in Figure 13. The
average anharmonicity constant for the modeν3 of WF6 can be
found from the∆ν3(Evib) slope: Xh3 ) -5.04( 0.01 cm-1. The
approximate formula eq 20 gives a rather close value:Xh3 )
-5.34 cm-1.
The integral normalized intensity is shown in Figure 7. As

for SF6, it follows the formula (nj3 + 3)/3 rather accurately.
There are no indications of the IVR rates in WF6 anywhere

in the literature. Nevertheless, numerically large inhomogeneous
widths given by our simulations enable one to assume that the
inhomogeneous contribution should be dominant.

Our final note concerns individual roles of scalar (mainly
intermode) anharmonicity and anharmonic splitting in the
formation of the inhomogeneous contour width. Looking at
the values of the anharmonicity constants, one may assume that
the anharmonic splitting is not very important in the specific
case of WF6. The direct calculation confirms this assump-
tion. Another situation takes place for the same modeν3, but
of SF6. There, these two effects give approximately equal
contributions to the width. We shall discuss this point further
in section 7.

6. Effect of Rotations on the Band Shapes

The above considered spectra involve only vibrational transi-
tions but do not include any rotational substructure nor its
dependence on the rotational quantum numberJ. Two effects
can be added to the previous treatment in the same approxima-
tion order. They are the rotor energy, which results in different
frequencies of the transitions in different rotational branches,
and Coriolis splitting in the 3-fold degenerate modes, which
strongly modifies the transition spectra therein. One next order
effect, which is the change of the rotational constantB for the
excited vibrational states in accordance with

can be easily taken into account, too.
Only the latter of the mentioned effects influences spec-

tra of the Raman transitions in the totally symmetric modeν1.
Indeed, only the Q-branch (∆J ) 0) is allowed for these
transitions, and no Coriolis effect is present in the states of
this nondegenerate mode. Thus, the frequency of transition
from any selected state in our calculation procedure is just
shifted from the previously used one by the valueR1J(J
+ 1), and this shift does not depend on the generated mode
occupation numbers. Numerically, for SF6, the value of this
shift is about 1 cm-1 for the typical room-temperatureJ ≈
50 cm-1, i.e. small with respect to the∆ν1 shifts shown in
Figure 11.
More complex changes may be expected, in general, for the

infrared transitions in the modeν3. The previously calculated
spectra formally correspond to the situation when both rota-
tional constantB and Coriolis constantú3 are equal to zero.

Figure 12. Upward transition spectra in theν3 mode of WF6 for
different vibrational energies: (a) 7000 cm-1; (b) 15000 cm-1; (c) 30000
cm-1. They result from convolution of the corresponding histograms
with the Gaussian windows of the width 2σGw equal to 4.5 cm-1 (a), 8
cm-1 (b), and 15 cm-1 (c).

TABLE 2: WF 6 Spectroscopic Constants (in cm-1) Used for
Calculations

i νi X3i

1 772.1 -1.7
2 678.2 -3.5
3 713.9152 X33 ) -0.63

G33 ) 0.21
T33 ) -0.105

4 252.1 -0.5
5 320 -4.4
6 129 -2

Figure 13. Shift ∆ν3 (line 1) of the mean frequency of the upward
transitions in theν3 mode of WF6 and width 2σ0 (line 2) of the spectral
contour as functions of the vibrational energy.

Bni ) B0 + Rini (16)
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The nonzeroB andú3 results in the trivial fact of redistribu-
tion of the full intensity I0 of the calculated spectra into
three rotational P-, Q-, and R-branches having different mean
frequencies. Their intensities are

For the shifts of their mean frequencies from the previously
calculated values caused by the rotation and Coriolis interaction,
there appears the common shift for all three branches∆νCor≈
-Bú3(nj3 + 2) and shifts for the P- and R-branches

which are responsible for the usual PQR-structure of the
vibrational band. The main complication, however, may arise
from the fact that the spectrum of any (n3, J) f (n3 + 1, J′)
manifold of transitions is in reality (i.e., withú3 * 0) much
more complex than the spectrum of purely vibrational transitions
(with ú3 ) 0).
One illustration is shown in Figure 14. Four spectra ofn3 )

2 f n3 ) 3 transitions are presented in this figure. The
spectrum in Figure 14a is one of the fragmentary spectra
involved in our calculations of section 4.1 for the molecule SF6

when any state withn3 ) 2 is generated, as discussed in section
3. Three other spectra in this figure are for the (n3 ) 2, J )
15)f (n3 ) 3, J ) 14) transitions (b), (n3 ) 2, J ) 15)f (n3
) 3, J ) 15) transitions (c), and (n3 ) 2, J ) 15)f (n3 ) 3,
J ) 16) transitions (d). These spectra are obtained by the
diagonalization of the vibration-rotation HamiltonianĤν3 of
the mode ν3, which includes theν3-related terms of the
Hamiltonian eq 9, the purely rotational terms, and the Coriolis

interaction terms. This Hamiltonian is

with the anharmonicity constantsX33, G33, andT33 of section 4
and the vibrational and Coriolis constants from ref 37:B )
0.091 084 cm-1, R3 ) -1.3106× 10-4 cm-1, andú3 ) 0.69344.
As theĤν3 diagonalization result, one has the splittings of the
(n3, J) manifolds onto the nondegenerate levels of symmetry
A1 or A2, 2-fold degenerate levels of symmetry E, and 3-fold
degenerate levels of symmetry F1 or F2. Then, having the
eigenvectors in the symmetry-adapted basis (see basically ref
47 and also ref 48 for some details) and exploiting the Moret-
Bailly selection rules,47 one can calculate the intensities of
allowed dipole transitions, which are, in principle, all the
transitions between the states of the same symmetry; in addition,
the frequencies of allowed transitions are found from the
eigenvalues. After that, all the initial states (withn3 ) 2 and
J ) 15 in our case of Figure 14) are assumed to be populated
proportionally to their degeneracies, and the resulting spectra,
as shown in Figure 14, are produced.
Now, two questions arise: to what extent do really more

complicated fragmentary spectra modify the previous results
of section 4.1, and how different are the spectra for the initial
states with differentJ? To answer these questions, we
performed the calculations of the inhomogeneous spectra in the
modeν3 with J ) 15 andJ ) 40 in a wide range of vibrational
energy. For these calculations, the state selection procedure
was the same as used previously, but new, much more complex
(n3, J) f (n3 + 1,J′) transition spectra were used. The resulting
spectra appear to be again nearly Gaussian, with the widths even
a little narrower (e.g., about 3% for the energy 10 000 cm-1)
than those plotted in Figure 6. The intensity is distributed
among the rotational branches in perfect correspondence with
eq 17. The mean frequencies of the different rotational branches
perfectly agree with eq 18. So, the principal conclusion from
these simulations is that the vibration-rotation spectra can be
produced by the purely vibrational spectra: some differences
for different J in the width can be neglected, and some
differences for differentJ in the integral intensity and mean
frequency can be taken into account systematically using eqs
17 and 18.
Our final point refers to the physical reasons for the small

effect of the Coriolis splitting on the spectral width. For the
spectra shown in Figure 14, for example, the standard deviation
that characterizes the width is 4.71 cm-1 for the spectrum in
Figure 14a and 4.56 cm-1 for the spectra in Figure 14b-d. It
can be derived that the standard deviationσn3 of then3 f n3 +
1 transition spectrum in any rotational branch may be schemati-
cally presented as

That is, the mean value of the squared frequency is the sum of

two terms: the first termνT2 is determined by the matrix ele-
ments of the operatorÔ33 (tensor) and is therefore proportional

to T332, whereas the second termνl2 is determined by the
l-splitting of the symmetry-adapted basis states and is propor-
tional to the value of (G33 - Bú3)2. Hence one can easily see
that the effect of the Coriolis interaction on the width is small
if the ratioBú3/G33 is small. (In the SF6 case, this ratio is 0.068.)

Figure 14. Spectra of then3 ) 2 f n3 ) 3 transitions in theν3 mode
of SF6. (a) Purely vibrational spectrum; the arrow indicates the
frequency of then3 ) 0 f n3 ) 1. (b-d) Vibration-rotation spectra
for the states withJ ) 15 atn3 ) 2 in different rotational branches:
(b) in the P-branch, (c) in the Q-branch, (d) in the R-branch.

IP ) 2J- 1
3(2J+ 1)

I0, IQ ) 1
3
I0, IR ) 2J+ 3

3(2J+ 1)
I0 (17)

∆νP≈ -2(1- ú3)BJ

∆νR≈ 2(1- ú3)B(J+ 1) (18)

Ĥν3
) X33n̂3(n̂3 - 1)+ G33( l̂3

2 - n̂3) + T33Ô33(tensor)+

(B+ R3n̂3)Ĵ
2 + Bú(Ĵ‚ l̂3) (19)

σn3
) (νT

2 + νl
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Moreover, as long as the signs ofG33 andú3 are opposite, the
Coriolis effect reduces the width as confirmed by the direct
calculation.

7. Discussion and Conclusions

The results of our simulations for the molecules SF6 and
WF6 led us to consider the inhomogeneous broadening as, at
least, the important effect in formation of the spectra of
vibration-rotation transitions between highly excited states. The
presented computational scheme has proved to be rather simple
and reliable in view of several independent tests. It provides
the integral intensities and peak positions very accurately in a
wide range of vibrational energy from the onset of chaos
up to the dissociation limit. The obtained bandwidths are much
wider than those presumably caused by IVR. For the latter
aspect, it should be noted that we can directly compare the
widths calculated in this work with only the much narrower
IVR widths for the modeν3 of SF6 suggested in ref 34, but
large calculated widths for the modeν1 of SF6 and the modeν3
of WF6, too, make the assumption for their dominant role very
realistic.
The Ramanν1 band in the XY6 type molecules is inhomo-

geneously broadened because of different anharmonic shifts for
the excited vibrational states with different mode occupation
numbers. For the infrared bandν3, the additional effect of
splitting of the states of the 3-fold degenerate modeν3, due to
its internal anharmonicity (see section 3.2), may be significant.
Its relative role can be found in the course of calculation. Figure
15 gives one illustration for the energy 20 000 cm-1 which
shows that the contribution to the width from the anharmonic
splitting is about 45% in the case of SF6 and only about 1% in
the case of WF6. This difference is not more than the
anharmonicity-constant interplay (see also the discussion at the
end of section 5).
For future applications, it is useful to compare the widths

calculated in this work for the modeν3 of SF6 with those
estimated analytically in ref 34. The values for the width are
presented there for both situations,without and with the
anharmonic splitting, so it is natural to compare them with our
corresponding values (as found, for example, from the dotted

and solid spectral contours in Figure 15). Such comparison
shows that our “unsplit” values are 2.7 times more atEvib )
7000 cm-1 and 2.0 times more atEvib ) 30 000 cm-1 than the
corresponding values of ref 34. It may be supposed that the
noticed difference is due to the equipartitioning of the vibrational
energy among the modes, assumed in ref 34. Since this
assumption is more valid for high energies, better coincidence
may be expected as the energy grows. This is really so, but
the discrepancy is still large even at the dissociation limit.
Moreover, being applied to the modeν3 of WF6, the analytical
evaluation works much worse: it gives 5 times less values for
Evib ) 30 000 cm-1 and 7 times less values forEvib ) 5000
cm-1 than the calculated ones.
The contribution to the width from theν3 anharmonic splitting

estimated in ref 34 almost compensates the discrepancy with
the calculation results of this work, but we believe that this fact
is situational; really, the difference between the analytical
evaluation and direct calculation for theν3 mode of WF6 is very
large: 4.5 times atEvib ) 5000 cm-1 and 3 times atEvib )
30 000 cm-1.
We stress the comparison of the results of this work with the

previous analytical estimates because the same effects are in-
volved in both approaches. In reality, however, some other
effects may add to the values of the widths. For example, it
may occur that occasional anharmonic intermode resonances
lead to redistribution of the intensity from thena f na + 1
transition to some close combination transitions. In the case
of SF6, disturbance of both theν1 andν3 bands may be caused
by the close intermode resonanceν1 + ν5 ≈ ν3 + ν6 (with a
defect of about 3 cm-1) depending on the related anharmonicity
constant value. Another effect may originate from nonzero
intermode anharmonicity constantsGij, Tij, andSij and lead to
additional broadening of spectra of transitions in degenerate
modes, as mentioned at the end of section 3.2. It should be
noted that it was not computationally easy to implement the
mentioned effects for the molecules like XY6, even if all the
constants are known, because of the enormous degeneracy of
high vibrational states leading to the necessity of diagonalization
of very large matrices for any selected state. The approaches
to do this rather accurately in some indirect way are in progress
now.
As for the experimental verification of the presented calcula-

tion results, we can refer to our coming publication.49 The
Raman spectrum of the modeν1 of SF6 has been measured in
the wide range of vibrational temperature from 850 K up to
1600 K, and rather good agreement has been found between
the experimental results and spectra calculated with the use of
the model presented here.
Concluding, we should note that any simple treatment of the

transition spectra for highly vibrationally excited molecules is
very desirable for modeling the infrared MPE dynamics. If the
main features of such spectra are known on the basis of known
spectroscopic constants, then the more realistic choice of other
unknown parameters of the complicated MPE process can be
made. Otherwise, the parameters of such spectra would be
included in the list of unknown ones, making the MPE modeling
much less convincing. We believe that the approach of this
work, based on reasonable assumptions and computationally not
hard, provides more correct and reliable spectroscopic data for
transitions between highly vibrationally excited states than the
prior ones.
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Figure 15. Spectra of the upward transitions in theν3 mode of two
molecules with the inclusion of the anharmonic splitting (solid line)
and without it (dotted line);Evib ) 20000 cm-1. Zero frequency shift
in the∆ν3 axis refers to the fundamental frequencies 948.1025 cm-1

for SF6 and 713.9152 cm-1 for WF6.
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1987, 121, 91.
(38) McDowell, R. S.; Krohn, B. J.; Flicker, H.; Vasquez, M. C.

Spectrochim. Acta1986, 42A, 351.
(39) Alimpiev, S. S.; Sartakov, B. G.Laser Chem.1992, 12, 147.
(40) McDowell, R. S.; Krohn, B. J.Spectrochim. Acta1986, 42A,

371.
(41) (a) Malinovsky, A. L.; Letokhov, V. S.; Ryabov, E. A.Chem. Phys.

1989, 139, 229. (b) Ryabov, E. A. In ref 24; p 55.
(42) Becker, F. S.; Kompa, K. L.Nucl. Technol.1982, 58, 329.
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