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Simulations of the spectra of vibrational transitions in highly vibrationally excited iXglecules at certain
energyE.i, are performed. The infrared (IR) transitions in the madef the molecules SfFand Wk as

well as the Raman ones in the modeof SK; are studied. The shapes and parameters of the spectral bands,
such as the integral intensity, the mean frequency, and the width, are obtained in a wide r&pge Tfie
calculated widths prove to be much broader than the expected contributions to them because of intramolecular
vibrational relaxation (IVR); this indicates the dominant role of statistical inhomogeneous broadening in the
width formation for the investigated molecules.

1. Introduction result of the intermode anharmonicity, as illustrated schemati-
cally on the right-hand side of Figure 1. Several experimental
methods aimed at studying this evolution of the vibrational

absorption spectrum of polyatomic molecules are described in

The multiple-photon (MP) excitation (E) of vibrations in and
dissociation (D) of polyatomic molecules in the ground elec-
tronic state by intense IR laser pulses are at the root of a new
line of inquiry in photochemistry that made its appearance thanks "€fS 20-23. The results of these works as well as other ex-
to the advent in the early 1970s of high-power pulsed @€ers perl.mental and theoretical |nvest|g.at|on§ of highly vibrationally
operating in the range-G11 um. After the first successful exc_lted_molecules were summarized in ref 24 and a recent
experiments on the resonant action of Q&ser pulses upon  review in ref 25.
molecular gases absorbing in the region of 4@ 2 and The main difficulty in comparing theory and experiment is
especially after the demonstration of the isotope-selective IR the scarcity of data on the nature of broadening (see, for exam-
MPD of polyatomic molecules (Bgl SK;),2 there followed ple, discussion in ref 26 related to the IR spectrum of highly
numerous experimental and theoretical works whose results werevibrationally excited molecules£sl). Two effects originally
summarized in a series of reviews and monogrdpks.The contribute to the width: (1) the IVR of the energy from the
interest in the IR MPE/D processes persists today because ofvibrational mode under study (says) which leads to the
the promise they hold for the separation of isotopes on an homogeneoubroadening, and (2) the fact that molecular exci-
industrial scale in the future when reliable and economical high- tation near a certain vibrational enerBy, can be represented
power tunable pulsed IR lasers with a high repetition frequ€ncy by numerous combinations of occupation numbers of various
are developed. vibrational modes which may lead to theahomogeneous

The model of IR MPD of a polyatomic molecule is schemati- broadening due to different anharmonic shifts of the frequency
cally illustrated in Figure 1. This qualitative model has already of the modev, by different combinations. The first contribution
been discussed in the reviews and monographs cited, and herés given by the rate of IVR of the mode. In simple oscillator
it is presented solely to make convenient the exposition of the models, it is associated witfriction, or damping etc. For
object of the present paper. The molecule first absorbs a few polyatomic molecules, it is calculated in the general form in
IR photons in the transitions of its vibrational mode involved refs 16 and 27. The purpose of the present work is to model
in the resonant interaction with the IR radiation (see the left- theoretically only the second effectstiatistical inhomogeneous
hand side of Figure 1). Thereafter, above some threshold energybroadeningof IR and Raman transitions in polyatomic mol-
Eonset(Onset of vibrational chaos), there takes place the intramo- ecules. It can dominate at certain conditions, which are dis-
lecular vibrational redistribution (IVR) of the absorbed energy cussed below in section 2. It is useful to note here that, in the
among the rest of the vibrational molecular modes as a resultgeneral stochastic theory of the line shape by Ktbstch
of the intermode anharmonic interaction (this is schematically domination is referred to as the casestdw modulation(pre-
shown by the broken arrows in Figure 1). This process is suming also slow damping). On the contraigst modulation
governed by the density of the anharmonic intermode resonanceseads to the collapse of the inhomogeneous width. This collapse
of different orders;*"*” and it may have a multiple time scale  is analogous, in particular, to the well-known Dicke narrowifig.
charactef®'® at that. Finally, at the third stage, the highly For the highly vibrationally excited molecule, the fast modula-
excited molecule keeps absorbing the IR radiation in conditions tjon case roughly corresponds to the fast IVR of all the modes
of modification of the vibrational excitation spectrum of all the  other thanw, (more details are in section 2), and the remaining

modes and the intermode anharmonicity. Qualitatively this cojlapsed width is associated with the rate of peely phase
modification boils down to the shifting of the vibrational /R 3031

absorption band toward the red side and its broadening as a We have enough indications from the experiment at present

* Corresponding author. FAX:(095)334-0886. E-mail:<letokhov@ (0 Make a statement that any of the above-mentioned effects
lIs.isan.troitsk.rer . may be mainly responsible for the broadening of spectra in
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Figure 1. Main features of IR MPE/D. See the text for details.

different specific cases. Realistic arguments have been madesection 7, we discuss the reliability of calculated spectra in
for example, in ref 32 in favor that the IR spectrum of mode connection with the existing estimates on the IVR rates in SF
v27in the moleculee-CgF1; at Eyip = 60 000 cnTt is broadened

due to IVR of this mode. The same conclusion has been drawn2, Theory: Definitions and Approximations
in ref 21 relating to the IR spectrum of modg in the molecule

(CF3)sCl at Eyi, = 35000 cnl. The pure dephasing width, We consider optical transitions near the frequency of one
however, gives probably the main contribution to the IR Mmode of a molecule (saya) which start from a vibrational state
spectrum of the €H stretching mode in the molecule (§F |g.[at some energfip. Our assumptions and definitions are

CH at room temperature, i.e. mean vibrational energy of about @s follows.

2000 cnt?! (see the experimental results in ref 33 and related (i) The modev, is referred to as thactive mode it is implied
discussion of these results in ref 31). Eventually, inhomogeneity that it is really active in either the infrared or the Raman
is considered as the principal effect in the width, at high spectrum, and correspondingly, the infrared or the Raman

vibrational energies, for the IR spectra of moadeof CRl in transitions are treated.

ref 22 and moder; of SKs in ref 34. We, as said above, will (ii) The upward transitions are considered for definiteness;
concentrate in this paper on the latter, just the statistical this means that the absorptive infrared transitions or Stokes
inhomogeneous broadening (in particular, for theof SF;). Raman ones are under treatment.

The paper is organized as follows. Basic definitions, ap-  (iii) The other modes; with i = 1, ..., s, wherei = a, and
proximations, and equations to describe the effect of statistical S is the number of vibrational degrees of freedom, are referred
inhomogeneity on spectra of vibrational transitions are given to as thebath modesn accordance with the convention accepted
in section 2. The inhomogeneous spectral shapes can bdn the literature on IVR.
calculated with knowledge of the fundamental frequeneies (iv) The stateg,[is assumed to behaotic(see, for example,
of molecular vibrations and the spectroscopic anharmonicity discussion in ref 35); among other things, this means that
constantsxj, which are usually available from routine spec- the|g,0hasmanysignificant projections on theegular states
troscopy of the fundamental, combination, and overtone bands.|hsC] the latter being described in terms of the set of mode
The calculation procedure is described, in general, in section occupation numbers; with their energie<£(®)

{ny NearEyip.
3. Being applied to infrared transitions in the triply degenerated

. : | | (v) Just mentioned energies of the regular stétglS= |n,
modes of spherical molecules like XYit requires also the nJfJare assumed to contain the zero-order harmonic contribu-

inclusion of anharmonic splitting. The calculation results in a tion and at least principal anharmonic corrections due to the
wide range of vibrational energy are presented in section 4 for spectroscopic anharmonicity constarfsi.e.

the molecule S§ and in section 5 for the molecule WFThe

rotations are not involved up to this point. Their inclusion is s s i-1

made in section 6, in a simple way, after finding the nonsen- EY = Eil%) ~ Y nlv, +x(n, — 1] + Zinjninj 1)
sitivity of previous results to the Coriolis splitting. Finally, in = ==
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(vi) For illustrative purposes, we also involve soméxing
parameteroE, a typical energy interval wherein the staflg’]
with close energies (eq 1) are strongly mixed, giving [ipg]
as the chaotic eigenstates.

Let us consider now the upward optical transitions from the
state

|gaD= Zcﬁdhﬁm (2)

with the energyE,. For each basis statasCentering the right
side of eq 2, there is one relevant bright stéi§’Oin the
vicinity of the energyE,i, + va Which coincides with thehg

in all mode occupation humbers exceptn,, being nown, +

1. Next, we include the principal anharmonic corrections to
the frequency of the transitiofing0— |hl(f)Daccording toeql
and use the harmonic approximation for its intensity, so the
frequency is

a)g) AVt 2N, T Zxaini 3

1Za
and intensity, in the units of the, = 0 — n, = 1 transition
intensity, is
189 ~n, + 1 (4)
If the stategh”’Dwerethe eigenstatesne would observe the
spectrum of the upward transitions from tlig(see eq 2) as
the lines with the frequencies|” (see eq 3) and the intensi-

ties |C/«}a|2|;3+) (see eqgs 2 and 4). However, they are not; the
eigenstates near the enerBy + v, are chaotic, being some
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Figure 2. lllustration of the case when similarity of the spectra for
the chaotic states to the inhomogeneous spectra for the ensembles of
regular states may be expected. The allowed one-to-one upward
transitions between the regular stateSare schematically shown on

the left side. The mixing of close regular states gives the chaotic states
|gdon the right side. The optical transitions from any stgfemay

occur toevery chaotic state having nonzero projection onto, at least,
one of the relevanth®Ostates.

where the following assignments are useglis the mean (or

superpositions of the regular states, and transition occurs, inequilibrium) occupation number in thigh mode at the total
principle, to any upper eigenstate having a nonzero projection vibrational energyE,ip; yi describes the exponential evolution

on any of theh{”C] Here we involve the mixing paramet®€

(during IVR) of the current energy in thgh mode to the

and notice that, in one limited case shown in Figure 2 where equilibrium energynivi; A; is equal to the shift of the average

spreading of the frequencies,” is much widerthan thedE,

the expected spectrum, in low resolution, cannot differ much
from the contour of the|;”, 15”) lines. Really, in that case
of smalldE, each (uff), I}f) line may be considered as leading
to some manifold of the widtldE and integral intensity(ﬂ”,
and any of such manifolds may interfere with only a small part

of them. This situation may be referred to as the statistical

inhomogeneity of the spectrum, since the effect results from

differentfrequencies (see eq 3) of the transitions frdifferent

regular states giving the contributions to the initial chaotic state
(eq 2). Further, being interested in the low-resolution spectrum

from an ensemble of the chaotic statgg with close energies,
one must do the averaging in both the@ndj. As long as the
equality ¥ «Cs.? = 1 holds true, each!” line is present in this
spectrum as a narrow manifold of lines with its integral intensity
I inherent in the regular statbsl) and the searched spectrum

transition frequency (eq 3) when the occupation number in the
ith mode changes from to n; + 1 and simultaneous averaging

at Eip over the rest of the occupation numbers is implied. All
three parameters entering the inequality eq 5 depenH,gn

The ni(Evin) and Ai(Evib) can be calculated numerically with
knowledge ofy; and x;,3* but evaluation ofyi(E.ib) requires
either the knowledge of the anharmonic coupling terms (see,
for example, ref 27) and hard calculations or the experimental
data and is very far from being a routine task. So, a natural
way to make things clearer is to calculate the spectral shapes
due to the inhomogeneous contribution; then, this should enable
us to estimate how fast IVR rates cannot be ignored. Our further
consideration is limited to the systems like those where the
dominant role of the inhomogeneous broadening has been
assumed (and probably proved) previou¥ly.

3. Calculation Procedure

must have the same low-resolution features as the spectrum from
the ensemble of regular states near the same energy. When To simulate spectra with the dominant role of inhomogeneity,

discussing the form of this spectrum, the tamhomogeneous
width may be used, in particular.

We considered the case of the relatively small mixing
paramete®E. The physical cause of the mixing is IVR, and
roughly, the faster the IVR, the great®E should be. Being
reformulated in terms of the IVR rates the adequate criterion

one must have tools for calculating two things as follows from
the considerations of section 2. It is needed, first, to construct
in explicit numerical form the representative ensemble of the
regular stateghsllying near some energy of interels§, and,
second, to get the frequencies and intensities of optical transi-
tions from each state in the spectral region of interest. Then

(see, for example, ref 31) for the inhomogeneous broadeningthe resulting spectrum can be found as some average for the

to dominate is a set of the inequalities

Vi <A 5)

ensemble. Since we are interested in the spectrum also for the
ensemble (now of the chaotic states algd), the averaging
procedure would assume uniform contribution from all states
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of the constructed ensemble and, in addition, take into accountsmoothing procedures. These optional parameters are given

(by multiplication) their statistical weights when necessary.
Construction of thehzCensemble may bdirect or random

below in every particular case.
In our further calculations, if there are no complete data on

The direct procedure implies trying possible combinations of the anharmonicity constants (the molecule §y®e, selecting

the mode occupation numbers and selecting all those stateghe generated states, limit ourselves to the harmonic approxima-
whose energy (eq 1) falls into some chosen narrow energy tion, for definiteness; otherwise (the moleculesSkve use eq
interval near theE,p. Such procedure is computationally 1 in full. It should be noted, however, that anharmonic
reasonable for small molecules, but for large molecules, it corrections do not lead to any visible effects other than some
becomes expensive even with the best numerical algorithms.evident small compression of the vibrational energy scale (see
Of course, we tried the direct procedure for several cases ofbelow for details).

our studies below, but found that practically the same final  3.2. Transition Frequencies and Intensities.Upward one-
results for the spectra could be obtained with the randomly quantum vibrational transitions are under treatment in the present
selected ensembles which, as a rule, involved only a small partstudy, as discussed in the beginning of section 2, wherein egs
of the states nedt,,. We discuss, next, this random-ensemble 3 and 4 are given for schematic description of the transition

construction and justify it in some detail.
3.1. State Ensemble SelectionThe procedure starts with

frequency and intensity, correspondingly. These formulas,
however, are adequate just for asymmetric molecules having

defining the upper and lower edges of the narrow energy interval only nondegenarate vibrations. The XMolecules being the

near the curren&,p, usually E;iy = AE. Then the mode
occupation numbers; are randomly generated using some

subject of this work are spherically symmetric and belong to
the point symmetry grous; their normal modes are usually

statistics, which is mathematically approved and adjusted to theassigned to th®,-group irreducible representations as follows:

Evib, and eachn} generation is checked to see whether the
corresponding energy (eq 1) falls in the interval fréy, —

AE to Eyip + AE or not. If it does, then the generated state is
included in our further calculation. The choice of the statistics
must ensure the equal probabilities of generation of the

(A, vAE), va(Fu), va(Fu), vs(Fag), ve(Fau)

We are considering the Raman transitions in the nondegenerate
mode v1 and infrared transitions in the 3-fold degenerate

nondegenerated states with equal energies. In the approximatiodnodevs. o _ ) _ _ )
wherein the anharmonic corrections in eq 1 are neglected, this Following Hecht}® we write out (with minor, quite evident

problem can be solved using the Boltzmann statistics

Wi(n) = [1 — exp(#)] o (r:;i!:rg?i_ —1)1!)! o p( n-i;/i)
|- ‘“(‘?)] "o, el ) ©)

for the independent harmonic oscillators with the frequencies
v; and degeneracieg of the modes of the molecule. In fact,
the probabilityW({n;}) of the {n;} generation divided by the
corresponding state degenerdgf{n}) = [1_,G, depends on
the sum of harmonic energiesy;, only:

S S

Wi(n) = C(T) G({n}) exp(= ) nv) (7)

W({n}) =

The parametef in eqs 6 and 7 is equivalent to the temperature
and may be optimized for the rate of successful trials. The
“optimum temperatureTy can be quite well determined by
solving the equation

S (%14

; expw;/Ty) — 1

Evio 8)

which equalizes the current vibrational energy on the left side
to the mean vibrational energy at the temperaflydin the
units of the Boltzmann constant) on the right side.

Choice of the window AE for selection of the randomly
generated states Btj, is dictated by two reasons: it would be

modifications) the diagonal second-order perturbation vibrational
Hamiltonian:

6 6 i—1
H,(vib,diag)=$ X;A(f — 1) + ZZ)gj A, + G, +
. 61
Gl — Aoyl + Y S T, 0 (tensor)+
;J; j j i ;; j ]

6 i—1
ZZSjOij(scalar) (9)
i=3j)=

Heren; is theith mode occupation-number operatdy; is the
operator of the vibrational angular momentum for the 2-fold
degenerate mode, |; is the operator of the vibrational angular
momentum for thp 3-fold degenerate modgi = 3, ..., 6),

and the operator®j(tensor) andOj(scalar) are some quartic
combinations of the related vibrational coordinates and momenta
explicitly given in ref 36. Further, in eq 9, the coefficients

Gj, Tj, and §; are, in fact, the spectroscopic anharmonicity
constants: the constarXsare responsible for the common shift
of the manifold of states with the same $ef} of vibrational
guantum numbers (identically to eq (1), and the other constants
are responsible for the splitting inside this manifold.

In this work, we limit ourselves to the perturbation Hamil-
tonian, eq 9. Transitions in the modeare, in this approxima-
tion, described by single line of the frequency (eq 3) and
intensity (eq 4) since there are no other terms thanXtioaes
in the Hamiltonian (eq 9) coupling the modewith the rest of
the modes, so the splittings are identical in the lower and upper
manifolds of then; — n;+1 Raman transition. On the contrary,
the infrared transitioms — nz + 1 consists of some number of

small enough for the regular dependence of the spectrumlines. If only the vibrational quantum numbes is nonzero,

parameters oik,i, to be neglected inside, but would be large

then thens — n3 + 1 transition spectrum depends on the three

enough to ensure the representative statistics. The number otonstants{ss, Gs3, andTss. This case is studied well, and related

selected states within theAE window would be also large
enough to provide sufficient reproducibility of the spectrum from
one computational run to another as well as quality of further

constants can be found in literature. Knowing these constants,
one can find the frequencies and intensities, which belong to
any nz — nz + 1 transition, in general numerically, but even
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TABLE 1: 32SF; Spectroscopic Constants (in cmt) Used for
Calculations

i Vi X Xai Xai Xsi Xsi Xei

1 774.5445 —0.896 —2.358 —2.902 —1.144 —1.12 —0.3625
2 643.35 —0.43 —-3.603 —1.271 —0.62 —0.348
3 948.1025 —1.7468 —1.52 —-1.2 -1.102
4 615.020 —0.19 +0.13 —0.1086
5 523.56 +0.85 —1.15
6 346.076 —-0.8

analytically for some firshz values®® Some general features

of those spectra are that the integral intensity, assuming that
the split levels are populated proportionally to their degeneracies,
depends on the initiatz as

I(ny— Ny + 1) = %(n3 +3)I(0—1) (10)
and the weight center (mean frequency) is given by
(N — ng+ 1) — vy = (2X55+ GgaIng (11)

That is, it is shifted from the fundamental frequengyby the
value on the right side of eq 11. The effect of nonzero
vibrational quantum numbers in the other modes of the molecule
on thenz — nz + 1 transition spectrum consists of two parts,
and we encounter only one of them in this work. Namely, we
assume that all the constari@s;, T3, andSs (i = 3) are equal

to zero. Then the spectrum in the morgefrom any selected
state with the sdin;} of the mode occupation quantum numbers
takes the structure of thg — nz + 1 transition, with the current

nz shifted additionally by

AVagq= ZX3i n,
=

The nonzero constantSs, T3, andS; may lead to additional
splittings. Our simplification is enforced to a certain extent,
since these constants are far from being known in full for the
molecules studied in this work. After presentation of the
calculation results, we shall discuss this subject more.

12)

4. Results for the Molecule Sk

After some analysis of available experimental data, we have
taken for calculations the values of frequencigsind anhar-
monicity constantX; presented in Table 1. Our comments are
as follows. The presented value &f is taken from ref 37; it
corresponds to Hecht's definition of® and is slightly shifted
from thevs band originm(v3) by the value Bofz =~ 0.126 cnt?,
whereBy is the rotational constant agdis the Coriolis constant.

Makarov et al.
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Figure 3. Histograms of the intensity distribution of the upward
transitions in the’s mode of Sk for different vibrational energies: (a)
7000 cnt?; (b) 15000 cm?; (c) 30000 cm?!. The fundamental
frequency is indicated by the arrow.

of the vibrational chaos in SHEonset= 5000 cnm14Y) up to
the dissociation limit, which is about 32 000 chf?2

4.1. Modevs. As said above in section 3, our calculation
of the spectrum starts from the selection of a certain number of
vibrational states within the/2E interval near the energsyip.
The valueAE = 50 cnt?! was used in all our computations.
The reason for this choice was that the narrodvEr(even down
to 1 cnt?) did not show any significant difference in the
resulting spectral contour parameters for any end&gy In
addition, the procedure of selection of the states, falling into
this energy intervalAE, from the randomly generated ones
turned out to be fast enough to deal with the large ensembles,
usually about 10states.

The spectral distribution (histogram) of transition intensities
is shown in Figure 3 for three energi€gs, = 7000 cnT? (a),
Evib = 15 000 cnt? (b), andE,j = 30 000 cnt! (c). Each of
these histograms presents intensities of all allowed transitions

The other frequencies are taken from ref 38 as the band originsfrom the states selected in one computational run divided by

m(v;) either measured or cited therein. The intramode anhar-
monicity constants for the mode are taken from ref 39, where
they are obtained by the interpretation of not only the3and

(as in some other works on this subject) but also the-2 v3
band; the constanKs; is given in Table 1, and two other
constants are

Gy3=0.9262 cm?’, T,3=—0.2487 cm™

All other constants; are from ref 40, where they are defined
as “effective” ones and obtained from the analysis of many
combination bands, but one constaft is only estimated.
Simulations of the inhomogeneous spectra in the mades
andvs were performed for the energies starting from the onset

the number of these states (10 000 for Figure 3a, 10 000 for
Figure 3b, and 5000 for Figure 3c). Therefore, the aggregate
intensity of the histogram is equal tas(+ 3)/3 in the units of

the 0— 1 transition intensity (see eq 10) with the moage
mean occupation numbas just for that run. One can see from
the presented histograms the evolution of the transition spec-
trum: the higher the enerdsin, the more intense, broadened,
and red-shifted this spectrum is. Of course, the histogram
characteristics at some energy, fluctuate from run to run,

but these fluctuations naturally drofpi,n~9 as the number
Nrun Of selected states is increased. Such parameters of the
spectrum as its integral intensity, mean frequency, and typical
width converge to some well-defined values which, in addition,
do not depend orAE.
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Now, we discuss how the histograms, as shown in Figure 3, E,px10 (em™)
are further processed for determination of the spectral contour Figure 6. Shift Avs (line 1) of the mean frequency of the upward
parameters. Here it should be noted that we are treating spectrdransitions in the’s mode of Sk and width 25, (line 2) of the spectral
with the dominant role of inhomogeneity, but tleaotic contour as functions of the vibrational energy.
spectra nevertheless. The latter means that each transition in

the histogram represents,_ n fact, some relatively narrow calculated spectrum by the Lorentzian is shown for comparison.
substructure due to the mixing of the regular states (see the Next, the dependences of the spectral-contour parameters are
discussion in section 2 illustrated schematically by Figure 2). presenied It should be mentioned that, for each engygyf

From the Very general conside_rations outlined also in sect_ion Sk, the histogram was calculated sever’al times to estimate the
2, the mentioned substructure is expected to be .Of Lo.remz'an'accuracy of calculations and find its parameters such as the mean
contour type. So, the natural procedure of smoothing h'StogramerequencyT/ standard deviationo, and integral intensityo. So

is their convolution with the Lorentzian. It is preferable to use the points’on the plots giviné the contour parameters, are
some realistic Lorentzian halfwidtly,, and th.e half.w'dths obtained by averaging over several computation runs. Figure
estlmated by Ange1% for the case under ConS|derat|(_)_n from g shows the dependences of the mean frequency (in terms of
his own experimental resutfshave bggn usgd. In addltlpn, 10 s shift Avs from the fundamental frequenay) and contour
extract the net result of the statistical inhomogeneity, the \yiqih 200 on the energE.i. Formally calculated in the course
convolution with the narrow Gaussian window has been done. ¢ e histogram generation, these parameters are in good
Its width 2o, was taken to ensure histogram smoothing as well 4greement with the best-fit Gaussian ones. It is seen that both
as to add to the histogram width not more than several percent.gependences exhibit very closely the linear law.

be seen there; another less satisfactory trial to approximate the

Particulari values of &, are given in the captions for the The linear dependence for the shift of the mean frequency
relevant figures. of any vibrational band from the corresponding fundamental
The results of these convolutions are shown in Figure 4. This mode frequency, i.e. Av; = v — v, is frequently explored in

figure presents the transition spectra [the spectral dehgity literature in the form

of the transition intensity] for the same energies as in Figure 3.

As mentioned earlier for the histograms, the transition spectrum Ap = X E (13)
becomes broader and shifts to the red side when the energy of I by,

the moleculeE,i, goes up. The resulting spectral shape may ~
be well-approximated by the Gaussian. One example is shownwhereX; is an “average” anharmonicity constant. In the case
in Figure 5, and rather good quality of this approximation can under consideration this average anharmonicity constant can be
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Figure 7. Integral intensity of the upward transitions in themode =
of Sk and WK molecules as a function of the vibrational energy. This _. 0002
intensityl, is given in the relative units of that of the9 1 transition. g
>
obtained from the slope of th&vs(E.i) dependence in Figure § 0.001
6, which gives the valueXs = —3.11 + 0.01 cntl. For 9
interpretation of this linear law, it is ordinarily assumed that = *
the vibrational energy isuniformly distributed among all 0.000 — T 1
vibrational degrees of freedom. Then some simple formulas 675 700 725 750 77s
expressing the; through the spectroscopic constants may be Frequency (cm)
derived. In our particular case of the 3-fold degenerate mode Figure 8. Histograms of the intensity distribution of the Raman Stokes
v the formula of such a kind is transitions in the’; mode of Sk for different vibrational energies: (a)
7000 cnt?; (b) 15000 cm?; (c) 30000 cm'. The fundamental
_ 6 L 6 Vg frequency is indicated by the arrow.
X3~ () G) " |8Xg+ 4G5+ g —X5| (14)
= i=if=3) Vi histograms are narrower and more asymmetric than those for

the transitions in the modes. All these facts indicate what
This gives, after the substitution of the &fonstants, the value  may be expected for the nondegenerate mode, whereas the

X3 = —3.136 cnvl, which agrees well with th&s found from anharmonic splitting in the degenerate mogdemakes the
Figure 6. spectrum broader and more symmetric. Let us clarify this.
The standard deviationp characterizes the contour width; As said, any group of the spectral lines with equal intensity

namely, if the contour is approximated by the Gaussian, it is joins the transitions from the states with the sameand gives
equal to the halfwidth at the & level. One can notice ~ some fragment to the histogram. It is seen from Figure 8 that
that the full width 25 is rather high, changing from 9.9 crh the fragment width becomes less for larger This can be
for Eyi, = 7000 cm! to 33.6 cm! for Eyip, = 30 000 cnil easily understood as long as the energy in the other modes
near the dissociation limit. It is, at least, much wider than the diminishes at the same time (the total enelgy, remains
assumed homogeneous width deing used in the convolution  constant), so deviation of the transition frequencies diminishes,
procedure (the, values are shown in the caption to Figure 4). too. The weight centers (mean frequencies) of different
The normalized integral intensity of the spectrlyfi.i,) (see fragments do not coincide, in general. The sign of this shift of

Figure 7) coincides well with the theoretical predictio(E,ip) then; + 1 fragment with respect to the fragment depends
= (ng + 3)/3, wherenz(E,ip) is the average occupation number on the relations between the intramode anharmonicity constant
in the vz mode for the energg.ip. X11 and the intermode anharmonicity constaxysit is positive

It should be noted that all above calculations were performed in the case under consideration, so one can see a sharper blue
with the inclusion of the anharmonic shifts in the state selection edge for the histogram. Similar behavior could be expected
procedure (see section 3.1). We have checked the influence offor the transition spectra in the modse if there were no
this on the final results and found that the use of harmonic anharmonic splittings. With the splitting, however, eagh
energies does not lead to significant errors. For example, atfragment becomes wider; moreover, this additional width grows
the highesE,,, the errors are 3.8% fakvs, 7.0% foroo, and with the ng, and any histogram asymmetry disappears.

1.9% for lo. In the »; mode case considered in the next The calculated histograms were processed as previously. The
subsection, the similar errors are, respectively, 4.9%, 2.6%, anddistinction was that their convolution with only the narrow
2.8%. Gaussian window was carried out, since there are no indications

4.2. Modev;. In the case of the mode, we deal, in fact, in literature of the IVR rate of the mode;. The resulting
with the Stokes Raman transitions. The histograms of their spectral contours are shown in Figure 9. It is seen that these
intensity distribution (see Figure 8) look somewhat different contours are narrower and less red-shifted than in the case of
compared to the histograms in Figure 3. Now, the groups of the modevs. This is because of smaller values of tKg
spectral lines with equal intensity, i.e. related to the same anharmonicity constants. One can also see in Figure 10 that,
generated occupation numbmr are clearly seen. Also, these as in the case of the modes;, the spectral contour is
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Figure 9. Raman Stokes spectra in the mode of Sk for different
vibrational energies: (a) 7000 cr (b) 15000 cmi?; (c) 30000 cm™.
They result from convolution of the histograms in Figure 8 with the
Gaussian windows of the widtho2,, equal to 1.2 cm! (a), 1.6 cmt
(b), and 2.8 cm? (c).
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Figure 10. Fit of the calculated Raman Stokes spectrum inth@ode

of SFs (solid line) by the Gaussian (dotted line) and Lorentzian (dashed
line); Evin = 20000 cn?, 206, = 2 cnm't.

approximated rather well by the Gaussian. Approximation by
the Lorentzian is worse.

The shiftAv; of the contour maximum and the contour width
209 are shown in Figure 11 as functions of the endgy. The
average anharmonicity constaft = —1.85+ 0.01 cnt! can
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Figure 11. Shift Av; (line 1) of the mean frequency of the Raman
Stokes transitions in the; mode of Sk and width 25, (line 2) of the
spectral contour as functions of the vibrational energy.

The width 25y is narrower than for the transitions in the mode
v3 at the same vibrational energy and grows from 4.4 tfar
Evib = 7000 cnt! up to 14.2 cm? for E,i, = 30 000 cn1l.
Nevertheless, these widths are again much wider thanjthe 2
for the modevs. The integral normalized intensityy must
follow the n; + 1 prediction as the function of the vibrational
energy, and it does.

Concluding this section, we stress its principal result: the
widths of the Sk spectra in the modes andv; are determined
mainly by the effect of statistical inhomogeneous broadening.

5. Results for the Molecule Wk

The developed model of statistical inhomogeneous broadening
is applied here to another molecule of the giype, namely,
WFe. The tungsten atom is approximately 6 times heavier than
the sulfur atom, and this results in considerable change of
spectral parameters of the fundamental modes. The effect of
central atom substitution on the spectral features is studied in
this section.

5.1. Spectroscopic Parameters of W§ This molecule is
studied much less than the §FWe sought complete sets of
the anharmonic constants for different modes and succeeded
only for the moders. Unfortunately, we did not find anywhere
the experimentally measured values of intramode anharmonic
constantsGs3 and Tz, which are responsible for splittings of
thevz mode energy levels. Only computed values are available
from ref 44, which are probably somewhat smaller than the
actual existing ones. The latter may be deduced by comparing
the Sk constants computed in the same ref 44 with the
experimental values. Nevertheless, we have preferred to use,
for definiteness, the complete set of anharmonic consfafats
Gag, Ta3} from the same ref 44 rather than extract one of them,
Xa3, from any other source (for examplé;; was measured in

be found from the slope of the first of these dependences (see'®f 45)- As for the other spectroscopic constants,Xgeand
eq 13 and related discussion). The approximate formula, like the vi have been taken from ref 45, except the more precise

eq 14 for the 3-fold degenerated mourg is now

6 . 6 vy
(Zgi) Xyt >9—Xy

X, ~ (15)

It gives the valueX; = —1.873 cnl.

v3, Which was taken from ref 46. The spectroscopic constants
that are explored in the present calculations are listed in
Table 2.

5.2. Modevs. The onset of the vibrational chaos in the
molecule W is unknown, but supposedly lies lower than in
Sk because of smaller normal mode frequencies. So, our
simulations started from the enerByi, = 5000 cnt!. As long



1446 J. Phys. Chem. A, Vol. 102, No. 9, 1998 Makarov et al.

—~ o004} () 250
£ I
(&)
< 1
T ook 200 -

_> '

L g
0.00 i I J < e

b°

N

~ 004 (b) %‘” 100 -
= 2
§ L
Z o002} or
_>

| N
0.00 N 1 N 1 . 1 N 1 0 5 10 15 20 25 30
E,,x10° (cm™)
_ oo (©) . . _

- Figure 13. Shift Av; (line 1) of the mean frequency of the upward
£ | transitions in the’s mode of Wk and width 2, (line 2) of the spectral
Ll contour as functions of the vibrational energy.

Z o002}
— Our final note concerns individual roles of scalar (mainly
* intermode) anharmonicity and anharmonic splitting in the
0.00 L . — T— formation of the inhomogeneous contour width. Looking at

400 500 600 700 the values of the anharmonicity constants, one may assume that
the anharmonic splitting is not very important in the specific
Figure 12. Upward transition spectra in the, mode of W for case of Wk. The direct calculation confirms this assump-
different vibrational energies: (a) 7000 cin(b) 15000 cm?; (c) 30000 tion. Another situation takes place fgr the same mogdut

of Sk. There, these two effects give approximately equal

cm L. They result from convolution of the corresponding histograms o i . . .
with the Gaussian windows of the widtig, equal to 4.5 cm (a), 8 contributions to the width. We shall discuss this point further

Frequency (cm'1)

cm™ (b), and 15 cm? (c). in section 7.
TABLE 2: WF ¢ Spectroscopic Constants (in cmt) Used for 6. Effect of Rotations on the Band Shapes
Calculations
: ” X The above considered spectra involve only vibrational transi-
' ' tions but do not include any rotational substructure nor its
% g;g% :%; dependence on the rotational quantum numibefwo effects
’ L can be added to the previous treatment in the same approxima-
3 713.9152 Xa3= —0.63 ; . o
Gz =0.21 tion order. They are the rotor energy, which results in different
Ts3 = —0.105 frequencies of the transitions in different rotational branches,
4 252.1 -0.5 and Coriolis splitting in the 3-fold degenerate modes, which
g i’gg :‘2‘-4 strongly modifies the transition spectra therein. One next order
effect, which is the change of the rotational constarior the
as the anharmonicity constants of Wéte not known in full, ~ excited vibrational states in accordance with

we have calculated only harmonic energies of vibrational states
for their selection. Figure 12 shows the inhomogeneous spectra
after processing the histograms. These spectra are for the same
energies as the previously shown spectra for also the mgde can be easily taken into account, too.

but of Sk (see Figure 4). Now the spectra are about 3 times  Only the latter of the mentioned effects influences spec-
broader and more red-shifted; this may be understood from thetra of the Raman transitions in the totally symmetric moge

fact that the excitations of the low-frequency modes ofWF Indeed, only the Q-branchA§ = 0) is allowed for these
due to large anharmonicity constants, lead to larger frequencytransitions, and no Coriolis effect is present in the states of
shifts than in Sk The spectral contour parameteks; and this nondegenerate mode. Thus, the frequency of transition
207 depending on the enerdy;i, are shown in Figure 13. The from any selected state in our calculation procedure is just
average anharmonicity constant for the megef WFs can be shifted from the previously used one by the valog](J
found from theAwvs(Eyib) slope: X3 = —5.04+ 0.01 cm. The + 1), and this shift does not depend on the generated mode

B, = By + a0, (16)

approximate formula eq 20 gives a rather close valdg:= occupation numbers. Numerically, for §Ehe value of this
—5.34 cnrl, shift is about 1 cm! for the typical room-temperaturég ~

The integral normalized intensity is shown in Figure 7. As 50 cnT?, i.e. small with respect to thAv; shifts shown in
for Sk, it follows the formula {3 + 3)/3 rather accurately. Figure 11.

There are no indications of the IVR rates in Yhywhere More complex changes may be expected, in general, for the

in the literature. Nevertheless, numerically large inhomogeneousinfrared transitions in the mode. The previously calculated
widths given by our simulations enable one to assume that thespectra formally correspond to the situation when both rota-
inhomogeneous contribution should be dominant. tional constanB and Coriolis constant; are equal to zero.
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- - interaction terms. This Hamiltonian is

5 03 a

E H,, = Xa3fiy(fs — 1) + Gaylls” — P + TaOx(tenson)+

2 01 A PO

g ol i (B + i) 32 + BL(3-1,) (19)

5 003 ® with the anharmonicity constantgs, Gss, andTss of section 4

% 0.02 and the vibrational and Coriolis constants from ref J:=

% 501 0.091 084 cm?, a3 = —1.3106x 104 cm %, andgz = 0.69344.

£ 0.00 As the I:IV3 diagonalization result, one has the splittings of the

_ (ns, J) manifolds onto the nondegenerate levels of symmetry

S 0.015 © A; or A, 2-fold degenerate levels of symmetry E, and 3-fold

2 0010 degenerate levels of symmetry Br F,. Then, having the

g 0.005 eigenvectors in the symmetry-adapted basis (see basically ref

£ 47 and also ref 48 for some details) and exploiting the Meret
0.000 Bailly selection ruled/ one can calculate the intensities of

S 002 (d) allowed dipole transitions, which are, in principle, all the

3 transitions between the states of the same symmetry; in addition,

% 0.01 the frequencies of allowed transitions are found from the

§ eigenvalues. After that, all the initial states (with= 2 and

= 0.00 J = 15 in our case of Figure 14) are assumed to be populated

930 940 950 960

Frequency (cm")

proportionally to their degeneracies, and the resulting spectra,
as shown in Figure 14, are produced.
Figure 14. Spectra of the; = 2 — ng = 3 transitions in the’s mode Now, two questions arise: to what extent do really more
of SFs. (a) Purely vibrational spectrum; the arrow indicates the complicated fragmentary spectra modify the previous results
frequency of thez; = 0 — nz = 1. (b—d) Vibration—rotation spectra of section 4.1, and how different are the spectra for the initial
for '_[he states with] = 15 atng = 2 in differen_t rotational branches: states with differentJ? To answer these questions, we
(b) in the P-branch, (c) in the Q-branch, (d) in the R-branch. performed the calculations of the inhomogeneous spectra in the
) o oo modevz with J= 15 andJ = 40 in a wide range of vibrational
The nonzerdB and G results in the trivial fact of redistribu-  gnargy  For these calculations, the state selection procedure
tion of thg full intensity I of the calculatgd spectra into  \as the same as used previously, but new, much more complex
three rotational P-, Q-, and R-branches having different mean (ns, J) — (ns + 1, J) transition spectra were used. The resulting

frequencies. Their intensities are spectra appear to be again nearly Gaussian, with the widths even
a little narrower (e.g., about 3% for the energy 10 000 §m
I =M| I =1| I =ﬂ| (17) than those plotted in Figure 6. The intensity is distributed
P o 'Q o IR 0
32+ 1) 3 3(23+1)

among the rotational branches in perfect correspondence with
eq 17. The mean frequencies of the different rotational branches
For the shifts of their mean frequencies from the previously perfectly agree with eq 18. So, the principal conclusion from
calculated values caused by the rotation and Coriolis interaction, these simulations is that the vibratierotation spectra can be

there appears the common shift for all three brandhes, ~ produced by the purely vibrational spectra: some differences
—B¢3(nz + 2) and shifts for the P- and R-branches for different J in the width can be neglected, and some
differences for different] in the integral intensity and mean
Avp~ —2(1— §5)BJ frequency can be taken into account systematically using egs
17 and 18.
Avg~2(1— §;)BJ+ 1) (18) Our final point refers to the physical reasons for the small

effect of the Coriolis splitting on the spectral width. For the
spectra shown in Figure 14, for example, the standard deviation
that characterizes the width is 4.71 chfor the spectrum in
Figure 14a and 4.56 cm for the spectra in Figure 14kd. It

can be derived that the standard deviatignof then; — nz +

1 transition spectrum in any rotational branch may be schemati-
cally presented as

which are responsible for the usual PQR-structure of the
vibrational band. The main complication, however, may arise
from the fact that the spectrum of angs(J) — (ns + 1, J)
manifold of transitions is in reality (i.e., witds = 0) much
more complex than the spectrum of purely vibrational transitions

(with &3 = 0).
One illustration is shown in Figure 14. Four spectragf -
2 — nz = 3 transitions are presented in this figure. The O = i+ v?— A (20)

spectrum in Figure 14a is one of the fragmentary spectra
involved in our calculations of section 4.1 for the moleculg SF
when any state withs = 2 is generated, as discussed in section
3. Three other spectra in this figure are for time € 2, J =

That is, the mean value of the squared frequency is the sum of
two terms: the first termv+2 is determined by the matrix ele-

15)— (ng = 3, J = 14) transitions (b),r = 2, J = 15)— (N3 ments of the operatdDs; (tensor) and is therefore proportional

= 3,J = 15) transitions (c), andh§ = 2,J = 15)— (n3 = 3, to Tz?, whereas the second termp is determined by the

J = 16) transitions (d). These spectra are obtained by the I-splitting of the symmetry-adapted basis states and is propor-
diagonalization of the vibrationrotation HamiltonianH,, of tional to the value of G33 — Bg3)?. Hence one can easily see

the modewv;, which includes thevsrelated terms of the  that the effect of the Coriolis interaction on the width is small
Hamiltonian eq 9, the purely rotational terms, and the Coriolis if the ratioBZs/Gszis small. (In the Skcase, this ratio is 0.068.)
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and solid spectral contours in Figure 15). Such comparison
i shows that our “unsplit” values are 2.7 times moreEgé =
L 7000 cntt and 2.0 times more &, = 30 000 cnt? than the
i corresponding values of ref 34. It may be supposed that the
noticed difference is due to the equipartitioning of the vibrational
energy among the modes, assumed in ref 34. Since this
i assumption is more valid for high energies, better coincidence
008k may be expected as the energy grows. This is really so, but
i\ the discrepancy is still large even at the dissociation limit.
Moreover, being applied to the moatg of WFs, the analytical
evaluation works much worse: it gives 5 times less values for
E.iv = 30000 cn1! and 7 times less values f&, = 5000
cm™! than the calculated ones.
The contribution to the width from the anharmonic splitting
p P estimated in ref 34 almost compensates the discrepancy with
0.00 - . S . the calculation results of this work, but we believe that this fact
250 200 150 100 500 is situational; really, the difference between the analytical
Av (em™) evaluation and direct calculation for themode of Wk is very
large: 4.5 times aE,j = 5000 cnt! and 3 times aE,p =
Figure 15. Spectra of the upward transitions in themode of two 30 000 cnl.
molecgles thh the inc_lusion of the anharmonic splitting (solid _Iine) We stress the comparison of the results of this work with the
and without it (dotted line)E,» = 20000 cm™. Zero frequency shift 015 analytical estimates because the same effects are in-
in the Av; axis refers to the fundamental frequencies 948.1025'cm . .
for SR and 713.9152 crit for WFe. volved in both approaches. In reallty,_however, some othe_r
effects may add to the values of the widths. For example, it
may occur that occasional anharmonic intermode resonances
lead to redistribution of the intensity from thg — n; + 1
transition to some close combination transitions. In the case

0.12

I, (1/em™)

0.04 +

Moreover, as long as the signs @3 and {3 are opposite, the
Coriolis effect reduces the width as confirmed by the direct

calculation. :
of Sk, disturbance of both the; andv; bands may be caused
7. Discussion and Conclusions by the close intermode resoqamp+ vs & v3 + vg (With a
) ) defect of about 3 cm') depending on the related anharmonicity
The results of our simulations for the moleculess $iRd constant value. Another effect may originate from nonzero

WFs led us to consider the inhomogeneous broadening as, atintermode anharmonicity constar@®, T;, andS; and lead to
least, the important effect in formation of the spectra of additional broadening of spectra of transitions in degenerate
vibration—rotation transitions between highly excited states. The modes, as mentioned at the end of section 3.2. It should be
presented computational scheme has proved to be rather simplted that it was not computationally easy to implement the
and reliable in view of several independent tests. It provides mentioned effects for the molecules like XYeven if all the

the integral intensities and peak positions very accurately in a constants are known, because of the enormous degeneracy of
wide range of vibrational energy from the onset of chaos high vibrational states leading to the necessity of diagonalization
Up to the dissociation limit. The obtained bandwidths are much of very large matrices for any selected state. The approaches
wider than those presumably caused by IVR. For the latter to do this rather accurately in some indirect way are in progress
aspect, it should be noted that we can directly compare the now.

widths calculated in this work with only the much narrower  As for the experimental verification of the presented calcula-
IVR widths for the modevs of SFs suggested in ref 34, but  tion results, we can refer to our coming publicatf8nThe

large calculated widths for the modeof SFs and the moders Raman spectrum of the modg of SK has been measured in
of WFs, too, make the assumption for their dominant role very the wide range of vibrational temperature from 850 K up to
realistic. 1600 K, and rather good agreement has been found between

The Ramarv; band in the X type molecules is inhomo-  the experimental results and spectra calculated with the use of
geneously broadened because of different anharmonic shifts forthe model presented here.
the excited vibrational states with different mode occupation  Concluding, we should note that any simple treatment of the
numbers. For the infrared band, the additional effect of  transition spectra for highly vibrationally excited molecules is
splitting of the states of the 3-fold degenerate megledue to  very desirable for modeling the infrared MPE dynamics. If the
its internal anharmonicity (see section 3.2), may be significant. main features of such spectra are known on the basis of known
Its relative role can be found in the course of calculation. Figure spectroscopic constants, then the more realistic choice of other
15 gives one illustration for the energy 20 000 €nwhich unknown parameters of the complicated MPE process can be
shows that the contribution to the width from the anharmonic made. Otherwise, the parameters of such spectra would be
splitting is about 45% in the case of &&nd only about 1% in included in the list of unknown ones, making the MPE modeling
the case of Wk This difference is not more than the much less convincing. We believe that the approach of this
anharmonicity-constant interplay (see also the discussion at thework, based on reasonable assumptions and computationally not
end of section 5). hard, provides more correct and reliable spectroscopic data for

For future applications, it is useful to compare the widths transitions between highly vibrationally excited states than the
calculated in this work for the mode; of Sk with those prior ones.
estimated analytically in ref 34. The values for the width are
presented there for both situationwjthout and with the Acknowledgment. This work was partially supported by the
anharmonic splitting, so it is natural to compare them with our Russian Foundation for Fundamental Research. I.Yu.P. and
corresponding values (as found, for example, from the dotted E.A.R. thank Dr. A. L. Malinovsky for useful advice.



Statistical Inhomogeneous Broadening

References and Notes

(1) (a) Isenor, N. R.; Richardson, M. @ppl. Phys. Lett1971, 18,
224, (b) Isenor, N. R.; Merchant, V.; Hallsworth, R. S.; Richardson, M. C.
Can. J. Phys1973 51, 1281.

(2) (a) Letokhov, V. S.; Ryabov, E. A.; Tumanov, O.@pt. Commun.
1972 5, 168. (b) Ambartzumian, R. V.; Chekalin, N. V.; Doljikov, V. S.;
Letokhov, V. S.; Ryabov, E. AChem. Phys. Lettl974 25, 515.

(3) (a) Ambartzumian, R. V.; Letokhov, V. S.; Ryabov, E. A.; Chekalin,
N. V. Saw. Phys—JETP Lett.1974 20, 273. (b) Ambartzumian, R. V.;
Gorokhov, Yu. A.; Letokhov, V. S.; Makarov, G. Nbaw. Phys—JETP
Lett. 1975 21, 171.

(4) Ambartzumian, R. V.; Letokhov, V. S. IBhemical and Biochemi-
cal Applications of LasersMoore, C. B., Ed.; Academic Press: New York,
1977; Vol. 3, p 166.

(5) Bloembergen, N.; Yablonovich, Phys. Todayl978 31 (5), 23.

(6) Schulz, P. A.; Sudbo, Aa. S.; Krajnovich, D. J.; Kwok, H. S.; Shen,
Y. R.; Lee, Y. T.Annu. Re. Phys. Chem1979 30, 379.

(7) Letokhov, V. S.; Makarov, A. ASa. Phys—-Uspekhi1981, 24,
366.

(8) King, D. S. InDynamics of the Excited Stateawley, K. P., Ed.;
Wiley: New York, 1982; p 105.

(9) Bagratashvili, V. N.; Letokhov, V. S.; Makarov, A. A.; Ryabov,
E. A. Multiple Photon Infrared Photophysics and Photochemidttgrwood
Acad. Publ.: Chur, Switzerland, 1985.

(10) Multiple-Photon Excitation and Dissociation of Polyatomic Mol-
ecules Cantrell, C. D., Ed.; Springer: Berlin, 1986.

(11) Lyman, J. L. InLaser Spectroscopy and its Applicatipfi®adzi-
emski, L. J., Solarz, R. W., Raisner, J. A., Eds.; Dekker: New York, 1987,
p 417.

(12) Lupo D. W.; Quack, MChem. Re. 1987, 87, 181.

(13) Innovative Laser Technologies in Nuclear Energy. Proceedings of
the 6th International Symposium on #sthced Nuclear Energy Research
March 23-25, 1994, Mito, Ibarakie, Japan; JAERI: Japan, 1994.

(14) Bagratashvili, V. N.; Doljikov, V. S.; Letokhov, V. S.; Makarov,
A. A.; Ryabov, E. A;; Tyakht, V. V.Saw. Phys—JETP 1979 50, 1075.

(15) Dibal, H.-R.; Quack, MJ. Chem. Phys1984 81, 3779.

(16) Stuchebrukhov, A.; lonov, S.; Letokhov, ¥. Phys. Cheml989
93, 5357.

(17) Stuchebrukhov, A. A.; Marcus, R. Al. Chem. Phys1993 98,
6044.

(18) Lubich, L.; Boyarkin, O. V.; Settle, R. D. F.; Perry, D. S.; Rizzo,
T. R. Faraday Discuss1995 102 167.

(19) Demianenko, A.; Letokhov, V.; Makarov, A.; Ryabov,faraday
Discuss.1995 102 301.

(20) Evseev, A. V,; Krivtsun, V. M.; Kuritsyn, Yu. A.; Makarov, A.
A.; Puretzky, A. A.; Ryabov, E. A.; Snegirev, E. P.; Tyakht, V.@hem.
Phys.1986 106, 131.

(21) (a) Bagratashvili, V. N.; lonov, S. |.; Letokhov, V. S.; Lokhman,
V. N.; Makarov, G. N.; Stuchebrukhov, A. Aa. Phys—JETP 1987, 66,
670; (b)Chem. Phys. Lettl988 146, 599.

J. Phys. Chem. A, Vol. 102, No. 9, 1998449

(22) Boyarkin, O. V.; lonov, S. |.; Bagratashvili, V. NChem. Phys.
Lett. 1988 146, 106.

(23) Fleming, P. R.; Li, M.; Rizzo, T. RJ. Chem. Phys1991 94,
2425,

(24) Laser Spectroscopy of Highly Vibrationally Excited Molecules
Letokhov, V. S., Ed.; Adam Hilger: Bristol, 1989.

(25) Nesbitt, D. J.; Field, R. WJ. Phys. Chem1996 100, 12735.

(26) Boyarkin, O. V.; lonov, S. |.; Kobakhidze, A. Apectrochim. Acta
199Q 46A 537.

(27) (a) Kuzmin, M. V.; Letokhov, V. S.; Stuchebrukhov, A. Ba.
Phys—JETP 1986 63, 264. (b) Kuzmin, M. V.; Stuchebrukhov, A. A. In
ref 24; p 178.

(28) Kubo, R. InFluctuation, Relaxation and Resonance in Magnetic
SystemsHaar, D. Ter, Ed.; Oliver and Boyd: Edinburgh, 1962; p 23.

(29) Dicke, R.Phys. Re. 1953 89, 472.

(30) Nitzan, A.; Persson, B. N. &hem. Phys1985 83, 5610.

(31) (a) Makarov, A. A.; Tyakht, V. VSa. Phys—JETP 1987 63, 9.
(b) Makarov, A. A. In ref 24; p 106.

(32) Bagratashvili, V. N.; Burimov, V. N.; lonov, S. |.; Sviridov, A. P.;
Stuchebrukhov, A. A.; Turovetz, I. MChem. Phys. Lett1987 137, 45.

(33) (a) Dibal, H.-R.; Quack, MChem. Phys. Letl98Q 72, 342. (b)
Baggot, J. E.; Chuang, M.-C.; Zare, N.;'Bal, H.-R.; Quack, MJ. Chem.
Phys.1985 82, 1186.

(34) Angelig C.J. Chem. Physl993 98, 2541.

(35) Rice, S. A. IfPhotoselectie Chemistry, Part LJortner, J., Levine,
R. D., Rice, S. A,, Eds.; Advances in Chemical Physics, Vol. 47; Wiley:
New York, 1981; p 117.

(36) Hecht, K. T.J. Mol. Spectroscl196Q 5, 355.

(37) Bobin, B.; BordeC. J.; Borde J.; Brant, C.J. Mol. Spectrosc.
1987 121, 91.

(38) McDowell, R. S.; Krohn, B. J.; Flicker, H.; Vasquez, M. C.
Spectrochim. Actd986 42A 351.

(39) Alimpiev, S. S.; Sartakov, B. G.aser Chem1992 12, 147.

(40) McDowell, R. S.; Krohn, B. JSpectrochim. Actal986 42A
371.

(41) (a) Malinovsky, A. L.; Letokhov, V. S.; Ryabov, E. &hem. Phys.
1989 139, 229. (b) Ryabov, E. A. In ref 24; p 55.

(42) Becker, F. S.; Kompa, K. INucl. Technol1982 58, 329.

(43) Angelie C.J. Chem. Phys1992 96, 8072.

(44) Halonen, L.; Child, M. SJ. Chem. Physl983 79, 559.

(45) McDowell, R. S.; Asprey, L. BJ. Mol. Spectroscl973 48, 254.

(46) Takami, M.; Kuze, HJ. Chem. Physl1984 80, 5994.

(47) Moret-Bailly, J.J. Mol. Spectroscl965 15, 344.

(48) Cantrell, C. D.; Letokhov, V. S.; Makarov, A. A. I@oherent
Nonlinear Optics. Recent Adnces Feld, M. S., Letokhov, V. S., Eds.;
Topics in Current Physics, Vol. 21; Springer: Berlin, 1980; p 165.

(49) Malinovsky, A. L.; Petrova, I. Yu., Ryabov, E. A.; Makarov, A.
A.; Letokhov, V. S. To be published.



